RWTH

Detail Visualization
for Live Coding

Bachelor’s Thesis at the

Media Computing Group
Prof.Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Hendrik Wolf

Thesis advisor:
Prof.Dr.Jan Borchers

Second examiner:
Prof. Dr.Bernhard Rumpe

Registration date: 08.07.2014
Submission date: 30.09.2014

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbstandig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, September 2014
Hendrik Wolf

Contents

| Uberblick

[Acknowledgements|

[Conventions|

1 Intr ion

2 Related workl

[3.1 Motivation for our Enhanced Prototype| . . .

3.1.1 Shortcomings of Kurz” Prototype| . . .

(3.2 Initial DesignIdeas

3.2.1 Three Columns Layout|.

2.2 FEach Variablein I n Fram

3.2.3 Linking the Three Columns|

xi

xiii

XV

xvii

15

15

16

18

19

21

vi

Contents

[3.2.4 Grouping of Data Types and Their

[Detail Visualizations 25
3.3 Preliminary User Study|. 33
[3.3.1 SetupandTasks|. 33

2 Resultsl 35

3.4 Final Design and Applied Changes| 36
[3.4.1 FrameDesign| 36

B.42 Detail Visualizations 37

{4 Implementation| 41
4.1 Existing Foundation for Our Prototype|. . . . 41
4.2 Newly Added Components| 45
4.3 Frame Management|. 47
¥4.3.1 Frame Creation| 47

4.4 Visualization Management|{. 48
4.4.1 Data Type Dependent Visualization| . 48

[5 Discussion of our Prototype| 49
p.1 Capabilities and Advantages| 49
.2 Limitations and Shortcomings|. 50

[6 Summary and Future Work| 53
(6.1 Summary and Contributions| 53
6.2 FutureWork] 54

Contents vii

A Not Implemented Detail Visualizations before |
User Study With New Frame| 57

[Bibliography| 63

[Index 67

ix

List of Figures

[I.1 Three possible visualizations for a number |
variablel o o000 2

[2.4 Screenshot of the Light Table| 10
[2.5 Screenshot of the IPython Notebook| 11
[2.6 Screenshot of Swift Playgrounds| 12

[3.1 The old version of the prototype by Joachim |

[3.2 Inline visualization of a variable in Light Table| 19

3.3 Three columnlayout| 21

[3.4 One idea for the frame design and its menus| 22

(3.5 Illustration of the missing link to the detail |

[3.6 Image of the hierarchical list visualization| . . 27

List of Figures

7 Pl isualization of a number variablel. . . . 29

13.8 Hierarchical list visualization of an object] . . 31

3.9 HTML Visualization of a HTML image string| 32

3.10 Final frame and itsmenus| 37
3.11 Final number visualization|. 38
13.12 Final object visualization| 38
4.1 Server Architecturel 43

xi

Abstract

Programming without receiving a feedback on the internal runtime state of a pro-
gram demands much from the cognition of the programmer. He has to take over
the role of the computer and simulate the program flow continuously in his head.
In contrast, live coding uses the capability of the computer for that continuous sim-
ulation. The computer executes the program in the background and displays the
result after each applied change.

Several existing live coding tools explore detail visualizations with different levels
of abstraction and possible user interaction. These tools show the benefit of fur-
ther extensions. One extension is the capability to regulate the amount of shown
information or filter out interesting parts. Furthermore, a majority of prototypes
does not yet offer the possibility to choose between different representations. This
possibility is essential since there is no visualization which is appropriate for each
situation.

This thesis presents a live coding prototype in JavaScript as well as diverse detail
visualizations. The prototype enables the programmer to switch between different
representations to find the most appropriate one. In case there exists no appropriate
visualization, our prototype offers the possibility to enhance it further by adding
new visualizations to the existing set.

xii

Abstract

xiii

Uberblick

Wihrend des Programmierens erhélt der Programmierer keine Informationen tiber
mogliche Programmzustdnde zur Laufzeit. Er muss die Rolle des Computers
iibernehmen und die Ausfiihrung des Programms kontinuierlich in seinem Kopf
simulieren. Dies erfordert hohe Konzentration. Im Gegensatz dazu wird beim Live
Coding die Leistungsfahigkeit und Kapazitdt des Computers fiir diese Simulation
benutzt. Der Computer fiihrt das Programm im Hintergrund aus und zeigt die
Ergebnisse nach jeder Anderung am Quelltext an.

Es existieren bereits diverse Live Coding Werkzeuge, die verschiedene Detail-
Visualisierungen mit variablem Abstraktionslevel und moglicher Benutzerinter-
aktion anbieten. Diese Werkzeuge zeigen das Potential von Live Coding. Eine
mogliche Erweiterung ist, dem Benutzer die Fahigkeit zu geben, die angezeigte
Datenmenge selbststdndig zu regulieren und interessante Teile herauszufiltern.
Aufierdem fehlt in den meisten Live Coding Werkzeugen und Prototypen bis jetzt
die Moglichkeit, zwischen verschiedenen Visualisierungen zu wechseln. Das ist
wichtig, da es keine Visualisierung gibt, die in allen Situationen passend und hil-
freich ist.

In dieser Arbeit prasentieren wir einen Live Coding Prototypen fiir JavaScript,
sowie verschiedene Detail Visualisierungen. Unser Prototyp ermdoglicht dem Be-
nutzer, zwischen verschiedenen angebotenen Visualisierungen zu wechseln. Weit-
erhin hat der Benutzer die Moglichkeit eigene Visualisierungen zu implementieren
und sie den bestehenden hinzuzuftigen.

XV

Acknowledgements

I'would like to thank Prof. Dr. Jan Borchers for making this thesis possible. I would
also like to thank my supervisor Jan-Peter Kraemer, for giving me this amazing
topic as well as his valuable and constructive suggestions.

Special thanks go to Moritz Wittenhangen, for taking over as my supervisor and
giving me frequently advice. Lastly, I would like to thank all people at i10 for

helping me whenever I had a problem or question.

Thanks for all the support!

xvii

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in colored boxes.

EXCURSUS:

Excursus are detailed discussions of a particular point in Definition-

a book, usually in an appendix, or digressions in a writ- '
Excursus

ten text.

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Chapter 1

Introduction

The original programming cycle is divided into four
phases: edit, compile, link and run. The programmer re-
ceived no feedback while editing the source code. As a re-
sult, in order to verify that the program works as intended,
the programmer has to simulate the changes and their ef-
fects in his head. But simulating the flow of a program
strains the limits of the human cognition [Snell, [1997]]. Ad-
ditionally, most people do not want to wait frequently for
their program to compile, link and finally run so that they
can debug it. Thus, they implement as much as possible
without debugging the program. This leads to a larger time
gap between the editing of source code and the detection of
bugs, which increases the required debugging time. More
parts of the program are affected by the bugs and as a con-
sequence have to be adapted to fix them.[Saff and Ernst,
2004al.

L1vE CODING/PROGRAMMING:

A coding paradigm. The computer continuously exe-
cutes the program in the background and provides im-
mediate feedback of the program state after each applied
change. The feedback can be displayed automatically or
on demand.

Recently, increased research on live programming fea-
tures and tools has been conducted [Choi et al. 2008],

Programming without
feedback is straining

Longer code editing
periods increase the
required debugging

time

Definition:
Live
Coding/Programming

1 Introduction

Live programming is
expected to assist
programmers by
providing continuous
visual feedback

for(var i=0;i< s.length;i++) {
alt = s.charCodeAt(i);
if(alt >= 65 && alt <= 90) {
neu = alt + delta;
if(neu > 90) {
while(neu > 90) {
while(i<50){
i= i+6;

truthy(t
L < 1/4 > 1 undefined
<1/9 >

6

15

falsy(fe

truthy (t 140
33 ne

7

[McDirmid, 2013], [Victor, 2012b], [Guo, 2013]. Live pro-
gramming intends to close the time gap between program-
ming and debugging by providing immediate feedback
while programming. This allows to reduce the four phases
of the cycle to just one. Expectations on live programming
are, e.g., the minimization of the latency between the visual
teedback on a change and it effects on the program, reduc-
tion of the strain on the human cognition and the simplifi-
cation of debugging (faster and more accurate). However,
to tap the full potential of live coding, appropriate visual-
izations are required. Using live programming to provide
just arbitrary immediate feedback is not necessarily useful.
Victor| [2011] states the following in his essay “Ladder of
Abstraction”:

"The appropriate visualization varies, and often there are
multiple good visualizations, each offering a useful per-
spective. We can look for metrics that summarize some as-
pect of the behavior. We can also consider transformations
that make it easier to visually compare multiple states of
the system.”

aaaaaaaa

<[] Y@ VX

QaQ

VX

70
01234567891011121314151617181920212223

n 123 2 Change

Figure 1.1: Three possible visualizations for a variable of type number. On the left, next to
value assignments of type number, the assigned value is shown. The results of assignments
in conditions are only visualized if they evaluate to true. This provides a quick overview on
the program state. In the middle, a hierarchical list can be seen, which provides a view on all
value changes applied to a number variable within its scope. On the right, a visualization
in form of a plot is shown, which also illustrates all value changes assigned to the variable.

For example, a number variable in JavaScript can be visu-
alized in form of a hierarchical list consisting of all value
changes over the whole program or as an exact value right
to each line consisting of an assignment. In other situa-

tions a plot could be the better choice, e.g., when the trend
of a variable throughout a loop is of interest (see figure
1.1). Usually, the user is capable of answering the question
in which situation, which visualization is the most useful.
Therefore, it is important that the user can switch between
different visualizations easily.

Recently, new live coding tools and prototypes, such as the
Light Tableﬂby Chris Granger or Swift Playgroundsﬂby
Apple, have been published, each with a slightly different
layout and approach on how to visualize feedback. They
enable a programmer to obtain live results in a more de-
tailed way. To give an example, the Light Table enables the
user to look at the properties of an object in form of a hierar-
chical list. The user can click trough the different hierarchy
levels to open parts of interest for a more detailed view.
But these new tools and prototypes do not provide func-
tionality for switching between different visualizations.
This prevents the programmer to find the appropriate visu-
alization for each situation. The moment their tool chooses
not the appropriate one and shows the wrong data, or the
right data in a wrong way;, the visualized feedback becomes
worthless for the programmer.

In this thesis we present a live coding prototype, which en-
ables the programmer to open an interactive visualization
for variables and to switch between different visualizations
to find the appropriate one for his needs. Furthermore, a
programmer can implement his individual visualizations
for different data types and add them to the selection. This
bachelor thesis is structured as follows:

First, we present in chapter [2| “[Related work!” inspiring re-

lated work and state-of-the-art developments, which we
use for comparisons with our own prototype, in the area
of live coding. In chapter [“Prototypel” we present our
prototype. We start with a list of reasons why an enhance-
ment of Kurz’ prototype is indispensable. Afterwards, we
introduce our initial ideas for our layout as well as detail
visualizations and illuminate our design process. Then we
present our conducted preliminary user study which we

! http:/ /www.lighttable.com
*https:/ /developer.apple.com/swift/resources.com

No appropriate
visualization for each
situations

Almost non tools and
prototypes support
switching between
different
visualizations

Present a prototype
where different
visualizations can be
used and added

 http://www.lighttable.com/
https://developer.apple.com/swift/resources/

1 Introduction

used to get some feedback on our concept and design. In
the end, we reveal our final design and highlight the ap-
plied changes which are based on the user study. Chap-
ter 4] “/Implementation[” deals with the implementation of
our prototype. Since the prototype is an enhancement of
Kurz’ prototype, we explain its architecture for a general
understanding of its manner of functioning. Then, we de-
scribe our newly constructed components, their assigned
tasks and the integration into Kurz’ prototype. We precise
both in a more detailed way, the management of the frames
and the management of the detail visualizations. In chap-
ter 5 “/Discussion of our Prototype[” we discuss our proto-
type with regard to its capabilities and limitations. Finally,
we describe in chapter[f] ©Summary and Future Work]" pos-
sibilities for further enhancements of our prototype and the
need for a future user study after it got refined.

Chapter 2

Related work

In this chapter we present all kinds of previous research
and state-of-the-art developments on the topic of live pro-
gramming. We start with an introduction of the typically
used action cycle while programming, its problems and at-
tempts to solve these problems. We then present early re-
search in the direction of live programming, followed by
some research on guidelines and taboos regarding the vi-
sualization of live feedback. Afterwards, we present var-
ious new developments and up-to-date software releases.
Finally, we describe some research about the usefulness of
live programming.

The assumption that complex cognitive skills are a neces-
sity for programmers exists at least since 1975. Gould|[1975]
describes in his paper “Some Psychological Evidence on
How People Debug Computer programs” multiple factors
why the error correction task (debugging) is exhausting
and cognitive skills are needed. To reduce the strain on the
programmer, a high number of debugging tools has been
published. They are intended to simplify the debugging
process by illuminating the program, its runtime states and
the existing data at these states. An example for a debug-
ging tool is the Whyline, a debugging prototype for Alice,
a programming environment [Ko and Myers, 2004]. The
Whyline allows the programmer to ask predefined ques-
tions about the program’s runtime failure in form of “why
did” and “why didn’t” questions. The set of available ques-

We present past
research as well as
up-to-date
developments

Programming without
feedback and
debugging takes a
great strain on
human cognition

2 Related work

Continuous feedback
already introduced
1985 by Henderson
and their VisiProg
environment

Introduction of VIVA
as a language for
image processing

Introduction of
Rehearse editor and
the use of inline
visualizations for
feedback

tions is generated automatically. The tool answers these
questions by showing the runtime events which caused
the output. In comparison to the usually used approach,
stepping through the code after implementing it, this tool
simplifies the search for the corresponding parts of code
causing the output. To sum up, debugging tools assist the
programmer with the error correction task and reduce the
strain on the programmer.

However, there is also a strain on the cognition of a pro-
grammer while editing source code. Snell [1997] explains,
that this strain is caused by the necessity to simulate the
whole program flow unassisted while editing. He intro-
duces a tool which already uses the idea of live coding.
It merges the edit, evaluate and debug mode (similar to
the four phases introduced in the introduction) and pro-
vides continuous feedback for the programmer. He calls
the method of getting feedback just after typing some code
the “ahead of time debugging” feature. But the concept of
continuous feedback was introduced even earlier by, e.g.,
Henderson and Weiser| [1985] and their VisiProg environ-
ment. They describe in a futuristic way (they built no actual
prototype) a system where a programmer receives contin-
uously feedback for his input and illustrates the specifica-
tions of their system.

The attempt of making programming easier to understand
by using not only textual feedback but also more graphi-
cal visualizations, such as diagrams or flow charts, was al-
ready introduced by visual programming languages. One
example is VIVA, a visual language for image processing
[Tanimoto, (1990]. In VIVA the programmer can express al-
gorithms by drawing flow diagrams (use of visualizations)
instead of writing source code.

Over the last years, plenty of papers, prototypes and tools
concerning live coding have been published. One of the
earlier tools is the Rehearse editor, introduced by Choi et al.
[2008]. Using an inline visualization the programmer re-
ceives direct feedback on the results of execution. In ad-
dition, undone statements are kept visible to enable back-
tracking to earlier states of the code (see figure[2.1).

function stylize (color=blue) { ®

Jar s
undefined

s = "thin solid® + color:
thin solidblue

5('#pl’).css(border’, s);

S('#pl').text();
Here is the first paragraph
fobject Object]

@

$('#p2').css('color’', color):
[object Object)

®

Figure 2.1: The figure shows a function called "stylize” and its
definition in the Rehearse editor. (1) shows the function name,
parameters and values. Beneath each line of source code (2), the
result of execution is shown (3). Undone statements (4) are still
visualized which simplifies backtracking. This screenshot is taken
from|Choi et al.|[2008]

Another approach of the Rehearse development environ-
ment was introduced by [Br et al| [2010]. The environ-
ment enables a developer to execute and afterwards inter-
act with his application in an extra window. Triggered by
each user interaction, recently executed lines become high-
lighted. The authors claim that using this visualization
simplifies connecting results of interactions with the cor-
responding source code.

A more recent development is the prototype implemented
in the programming language YingYang and published by
McDirmid [2013]. His prototype uses a combination of
probing (an inline visualization) and tracing. Probing en-
ables the user to inspect all kind of variables and expres-
sions by visualizing their current values directly in the next

Probing in form of
inline feedback and
tracing in form of a
second column for
marked code

8 2 Related work
function binarySearch (key, array) { key = 'g'
array = [Ial.lblllcllldlllell |1:|]
var low = @; low = @
var high = array.length - 1; high = 5
while (low <= high) { low= @8 | 3 | 5
high= 5 | 5 | 5
var mid = floor{(low + high)/2); mid= 2 | 4 | 5
var value = array[mid]; value = 'c' | 'e' | 'f’
if (value < key) {
low = mid + 1; low= 3 | 5 | 6
}

Figure 2.2: This figure is a screenshot of Victor's talk ”Inventing on Principle” [|Victor,
2012b]. On the left side the source code for a binary search method is illustrated. On the
right side we can see the used example function parameters for the binary search function,
as well as feedback for each time a variable is used. For each iteration of the used while loop
a new column for all its variables is created.

Bret Victor published
multiple essays and
and held a
presentation
regarding live coding
and visualizations

line. Tracing enables the user to place print statements,
which then visualize the chosen data in a second column, a
so called trace pane. For example, different states of an ar-
ray can be illustrated. Furthermore, each trace output can
be used as a navigation to the source code used to create
that line.

An influential person in the area of live coding and the de-
sign of visualizations for feedback is Bret Victor. He made
numerous contributions in the field of live coding and held
some talks about it such as “Inventing on Principle” |Victor
[2012b]. He illustrates plenty of visualization techniques on
what and how to visualize feedback. Moreover, he presents
in his essay “Ladder of Abstraction” some design guide-
lines, e.g., that depending on the situation a different vi-
sualization with a higher or lower level of abstraction can
be appropriate [Victor, 2011]. In his essay “Learnable Pro-
gramming” |Victor| [2012a] enumerates multiple criteria a
programming environment has to fulfill to make the pro-
gramming more understandable for the user. Additionally,
he names plenty of misconceptions in regard to the content
of feedback and its design. Almost all of his examples in
his essay “Learnable Programming” refer to the online en-
vironment Khan Academyﬂ , which was published for be-
ginners to learn programming.

'https:/ /www.khanacademy.org/computing/cs

https://www.khanacademy.org/computing/cs

Most of the examples in his essay refer to Khan Academy,
since it was a response to this environment. They took his
previous talks as an inspiration for it and Victor was not
satisfied with the result. Khan Academy’s environment of-
fers a live coding feature in form of a two view layout. On
the left side the user can write his code and on the right
side the result of the program (everything is rendered into
a canvas element) is permanently updated, without show-
ing, e.g., intermediate results for variables.

var i = B; 1
while (i = 2008) {
var scaleFactor = 1 + pow(sin{if12), 3); i 1 1 1.0

resetMatrix();
var i = 8; 0
while (i = 2000) { |
1 + pow{sin{i/12), 3)};

resetMatrix(); |

f
var scaleFactor
5

Victor criticizes the
live coding
environment by Khan
Academy and
suggest
improvements

Figure 2.3: This figure consists of two screenshots from a video used in |Victor[2012a]. A
source code sample is on the left side of each screenshot. On the right side is the visualized
feedback. This visualization is an example for the usage of different abstraction levels. For a
small part of the timeline the exact newly assigned value is shown in form of a table. When
the programmer zooms out of the timeline the illustration changes from a table to a plot. By
moving the mouse over the plot for a variable its concrete values are shown.

Finally, we present three of the newest published program-
ming environments with live coding features: ' Light Table
Swift Playground and [Python Noteboo. All of them
offer visualizations of varying abstraction levels, which the
other presented prototypes do not. It is interesting to see
that all of them actually chose a different layout and place-
ment for their visual feedback.

Use of a second
column and inline
visualizations for the
live feedback

The Light Table by Chris Granger, for JavaScript, combines
an arbitrary number of columns and inline layout for its
live feedback (see figure[2.4). Two columns are the standard
for the JavaScript version of the Light Table, but the user

*http:/ /www.lighttable.com
*https:/ /developer.apple.com/swift
*http:/ /ipython.org/notebook.html

 http://www.lighttable.com/
 http://www.lighttable.com/
https://developer.apple.com/swift/
http://ipython.org/notebook.html

10 2 Related work

LightTable

Welcome | cube.js browser

if (! Detector.webgl) Detector.addGetWebGLMessage() ;000

workspace

var container, stats
var camera, scene, renderer;

var mesh; v THREE.Mesh
» _modelViewMatrix: THREE.Matrix4
» _normalMatrix: THREE.Matrix3
castShadow: false
children: Array[@]
eulerOrder: "XYZ"
frustumCulled: true
geometry: THREE.BufferGeometry
» _listeners: Object
attributes: Object
boundingBox: null
boundingSphere: THREE.Sphere
dynamic: false
hasTangents: false
id: o
morphTargets: Array[0]
offsets: Array[8]
» __proto__: Object
__webglInit: true
id: 8
» material:
THREE .MeshPhongMaterial
» matrix: THREE.Matrix4
matrixAutoUpdate: true
matrixWorld: THREE.Matrix4
matrixWorldNeedsUpdate: false
name: ""
parent: THREE.Scene

navigate

connect

o
=
©
=
(=
8

init();
animate();

function init() {

container = document.getElementById('container’);

Figure 2.4: Shows the Light Table and parts of a JavaScript program. Two columns are
currently used and an inline visualization for an object is open.

can add any desired number of columns. These columns
can contain websites as well as other files. Furthermore, a
console can be opened at the bottom of the editor. On the
left side a programmer can constantly see his source code,
on the right side a webpage where the JavaScript code is

induced.
Second column Furthermore, to look at intermediate results, each variable
shows a website can be inspected in a more detailed view. To give an exam-
where the JavaScript ple, for an object an inline visualization in form of a hierar-
code is induced chical list, containing all its properties, can be opened. The

user can open and close properties of interest for further
information. Additional information and intermediate re-
sults can be also perceived by opening a console at the bot-
tom of the editor. When it is open, it uses the whole width
of the editor for feedback visualization. To add results to
the console the user has to use the console.log () com-
mand.

11

In [1]: import nmumpy as np
import sys
In [2]: | np.random.rand (10}
Cut[2]: array([0.9590354%, 0.20840774, 0.80732074, 0.72494%&2,
0.03881097, 0.726098477, 0.92148231, 0.96582423,
In [3]: np.sin(_)

Out[3]: array([0.81863802, 0.20680236, 0.76165864, 0.66308773,
0.03880123, O0.66461974, 0.79649888, 0.82251797,

0.30424338,
0.85202918])

0.28857158,
0.6814584171)

Figure 2.5: The figure illustrates an IPython Notebook example. For each line of input,
an output line directly beneath that is created whenever an Python object is returned by an

expression.

In IPython a total inline layout is used (see figure 2.5). Ev-
ery output for an input line, which consists of an expres-
sion and returns a Python object, is displayed directly in
the next one or multiple lines. Commands, such as _ (last
output), can be used to access the results later on. One
feature, which is similar to our concept, is the offered func-
tionality to choose alternative representations for feedback
such as HTML, JSON, PNG or LaTeX.

The layout of the recently published Swift Playgrounds

(still in the beta phase) builds a strong contrast to that (see
figure 2.6). As a standard there are two columns. The left
column (called Source Editor Window) contains the source
code, while the right one (called Sidebar) contains feedback
for every line of source code directly next to it. Whenever a
user wants more information, such as more context, a third
column named Assistant Editor is used. For each line of
feedback in the sidebar, a new visualization in the Assistant
Editor can be opened. The Assistant Editor is only visible
when there is at least one detail visualization open.

For each type of data exists a predefined visualization. The
detail visualization, e.g., for a number variable of interest, is
a plot which contains all the changes applied to the variable
at the chosen line over the runtime. Furthermore, the Swift
Playgrounds enable the visualization of a whole applica-
tion. To sum up, the sidebar is primarily used for textual
visualizations with less context around it, whereas the As-
sistant Editor provides more detailed visualizations, con-
taining more information and possibly with a more graph-

Alternate
representations for
feedback can be
selected

Use of a a sidebar
and assistant editor
for feedback

Use of predefined
visualizations

12 2 Related work

te

L] Baticons — Balioons playground — Edited
= M Batcons.playground |+ [0 setugkieenl .. = Gl Timaiion @ Dboons piayground (Timeing) oB

func ﬂummuululumv 3 SHSCe
delegate : Sl(vhysxcscontaune\eoatn: 1{ Balloans

" Blimp Control

yaffsetfar ={i (Functian)
return ae * sin[l f 18.8) (1058 timas)
I == = Scene Configuration
/4 Set up belloon Lighting and per-pixel collisions.
balloonConfigurator = { b in (Function)
b phys ¢ Body. [a!ngnryﬂ“!uk CONTACT_CATEGORY
b.phys icsBody. fieldBitMask = WIND_FIELD_CATEGORY
b. LightingBitMask = BALLOON_LIGHTING CATEGORY 55 times)
/4 Load images for balloen explesion.
balloonPop = {1...4).m8p { ISKTaxture, SKTexture, SKTe...
SKTextured inagehameds “explode_0\(8)°) 4 times)

77 Tatslh burtwlaat Fleld dorces.
war terbulence = SKFioldNor

aninationSpeed:4. 81
turbulence. cotegoryBithask = WIND_FIELD_CATEGORY SHNaiseFieldode
turbulence,strength = 8,21 SKNaisoFieicNods
scene, addChild (turbulence) (GameScene ({Function}| (F...

cannonStrength = 210.8 200

/i wessensssssana Scont Initialization sssssssssssssssss

'/ Do the rest of the setup and start the scene.

setupheraiscene, oelegate)

setupFan(scene, delegate) * lat y = B0 * sinfx)
. setupCancons(scene, delegate)

func handleContact(bodyA @ SKSpritelode, “
bodyB : SkSpritetodel] {

f (bodyA == ‘|rrnl 1{
bedyB. rormalTexture =)
bedy®. runAct ion[remoy ruAUnonA(Hnr]
} else if (bodyB == 'mrc! {
bodyh. normalTexture = nil
i bodyh. runACt ion resoveRal loonkct fon) e
¥

Figure 2.6: The image shows an example of the Swift Playgrounds and their live coding
features. It is divided into three columns. The left column contains the source code, the
central one short feedback for assignments, functions or loops and the third column shows
two detail visualizations. The top one illustrates the result after executing the whole ap-
plication called ”Balloons”. Beneath that is a visualization in form of a plot, showing the
flight height of a zeppelin over time. It is associated with the variable yOffsetForTime.

ical representation.

Numerous more prototypes exists, but since we want to
limit the number of presented prototypes, tools and con-
cepts to the (in our opinion) most interesting ones we just
enumerate a few of them and do not describe them in more
detail: |Guo| [2013] with Python Tutor, Phari Lively Ker-
neﬂ and [Edwards| [2004] with the EG prototype.

Finally, after looking at all these live coding tools and pro-
totypes, the question arises how great the benefits of live
coding and its continuous visual feedback are.

A study about continuous visual feedback while debug-

ging conducted by [Wilcox et al| [1997] showed a neutral
result and they concluded, that it could be task and pro-

grammer dependent whether live feedback actually is of

*http:/ /pharo.org/
Shttp:/ /www.lively-kernel.org/

http://pharo.org/
http://www.lively-kernel.org/
http://www.lively-kernel.org/

13

benefit or not. In their user study each participant was con-
fronted with two Forms/3 programs to debug, one with
live feedback and one without. Since the participants were
divided into two groups, respectively half of the partici-
pants worked on each problem with live feedback. For their
user study they used three measurements: debugging ac-
curacy, debugging behavior and debugging speed. Their
results showed no overall improvement regarding the ac-
curacy and speed. It was quite task dependent whether live
feedback improved the results or made them worse.

In another study, conducted by Saff and Ernst|[2004b] and
presented in their paper “An experimental evaluation of
continuous testing during development”, the results were
slightly in favor of live feedback.

To sum up, the positions and findings about live coding
vary and it is still necessary to research in which situations
it provides a significant advantage. We believe that the re-
sults of future users will be in favor for live coding and
more significant. Live coding needs to be researched fur-
ther before we can tap its full potential. To give an exam-
ple, there are still different approaches (two columns, three
columns, two columns and inline,...) on how to optimally
integrate visual live feedback into development environ-
ments. It is still unclear which approaches are best suited.

Usefulness of live
feedback probably
task and programmer
depend

15

Chapter 3

Prototype

In this chapter we present our prototype, which is an en-
hanced version of the already existing prototype by Kurz
[2013], Heinen! [2012] and Belzmann! [2013] for JavaScript
in Adobe Brackets, illuminate the design process and jus-
tify our design decisions. We start with giving reasons for
the necessity of an enhancement of the current prototype.
Then, we introduce our basic design concept, such as sepa-
rating the editor in three columns, and detail visualizations.
Next, we explain the purpose of our preliminary user study
and describe its setup. One reason for this user study was
to improve and refine our design. Finally, we present our
final design and talk about the applied changes, based on
the user study.

3.1 Motivation for our Enhanced Proto-
type

Our ambition is to develop an interactive and easily ex-
pandable software prototype, which enables the user to
look at specific variables of interest in detail and perceive
their changes while programming. Mainly, as already men-
tioned in the introduction, it is intended to help the user
to keep track of the current state of the program and to fix
bugs while programming, without the exhausting task of

This chapter is spilit
into the initial design
process, a
preliminary user
study and our final
design

16

3 Prototype

var testText =

var x = 10;

for(var 1=0;1i<100;7++) {

simulating the program flow and effects of changes to the
code in his head. The prototype is going to be used for fu-
ture user studies after further refinement. One reason is to
test the usefulness of our enhanced prototype for program-
mers. A couple of ideas for possible user tasks will be listed
in chapter [6| /Summary and Future Work!". Our prototype
is based on the Adobe Brackets plugin by Kurz [2013].

H
10

f< 1/100 > 0 truthy(true)

X= x+1; 11
for(var u=0;u<2;u++) { E i<1/2> 0 truthy(true)
X = x+1; H 12
X = x+1; i3
}
varmib = [[1, o, 0, [3,[3],[3235, : [[1, @, 0, [3, [3], [3235,
[346]]],4,4,5,6,7,8, 9,1,34,5,6,7,[4,3]1]1,
[0! 15 0)3! 4!5)6)758)859)1534)5!6)7)4)3]5
[l, 1’ 0137 4’5)6)758)859)1534)576)7)4)3]’
[e, 0, 1,3,4,4,5,6,7,8,8,9,1,34,5,6,7,4,3 1]

Figure 3.1: A cutout of the old prototype by Joachim Kurz. The source code is on the left,
the live feedback on the right. The user can use the boxes in line 8§ and 11 to step through

the iterations of the loops.

Current visualization
provides in some
cases not enough
information

3.1.1 Shortcomings of Kurz’ Prototype

The current live coding editor by Kurz|[2013] already pro-
vides a rough overview on the state of a program, by show-
ing the immediate results for each assignment and term
right next to the corresponding line of source code. There-
fore, it is divided into two columns: one for the source code
and one for the feedback. We call the first column (source
code) from now on code view and the second one (visual-
ized feedback) feedback view.

In a majority of cases, the current live coding editor with
Kurz’ prototype plugin (see the cutout in figure is suf-
ficient to spot bugs and responsible parts of code. But
occasionally more detailed, clearly laid out visualizations,
placed in a larger space than one line, are necessary.

In Kurz’ prototype, we determine the following three major

3.1 Motivation for our Enhanced Prototype 17

problems we want to solve with our new prototype:

1. Lack of possible interaction with the visualization,
to adapt the representation and amount of informa-

tion

There is almost no interaction possible with the cur- Filtering of

rent prototype. It is not possible to switch between information or
different visualizations, hide any undesired informa- switching between
tion or get additional one. For example, when con- visualizations is not
sidering a nested object, initially reducing the shown possible with Kurz’
information to the top-level properties could prevent prototype

from the confrontation with a large amount of un-
necessary information. If required, the user can open
properties of interest by himself.

Using the current live editor, monitoring a couple of
selected variables and their changing values can be-
come nerve-racking. The user has to look for all lines
where value changes are applied to the monitored
variable. That is time consuming and not efficient.

2. Partly unfitting illustration of information

In the current prototype each visualization for an ap- Often not enough
plied assignment has the space of exactly one source space for an
code line. More precisely, each visualization is about appropriate
25 pixel high and infinitely wide. But for visualiza- visualization

tions with a width above the width of the feedback
view, a scrollbar shows up and only a part of the
whole content is visible at the same time. That space
is sufficient for the visualization of a single number as
a result of a term, but not for most of the other data
types, such as an array or an object. In addition, data
such as HTML elements, cannot be illustrated prop-

erly by visualizations with a textual representation. Possibility of a less
In these cases a more graphical representation is es- abstract view is
sential. One possibility is to take the HTML element missing

and render it.

It becomes notable, that in some cases a visualization
needs more space than one line, to allow a clear lay-
out.

18

3 Prototype

It occurs that context
is missing

Space for
visualizations is
limited, therefore
thoroughly planing of
the layout is essential

3. Missing context and additional information

The current prototype provides for each line in the
code view exactly one line in the feedback view.
These lines are located right next to their correspond-
ing lines in code view. Thus, a line of code, which
changes the value of a variable, and its result are al-
ways located next to each other. That can become a
problem when, e.g., changes to a variable are applied
at different locations in the program. The user has to
scroll through the program to compare how its value
changes.

Bret Victor states the following in his essay “Learn-
able Programming”:

“Data needs context. It is rarely enough to see a sin-
gle data point in isolation. We understand data by
comparing it to other data.” |Victor| [2012a].

Therefore, the current illustration of loops and value
changes during all iterations implies another prob-
lem. While clicking through the iterations, the pro-
grammer has to remember previous values of an iter-
ation to compare them. Thus, it is difficult to observe
value changes. Also, additional information such as
the prototype of an object or the length of an array are
missing.

3.2 Initial Design Ideas

During our development process we had to make multiple
design decisions concerning how and where to realize our
detail visualizations. The limited space for the detail visu-
alizations is a challenge, moreover since the code and feed-
back view already take a great part of the available space.
We looked at various already existing live coding proto-
types and tools, collected ideas and finally came up with
designs for our separate detail visualizations and our un-
derlying layout.

3.2 Initial Design Ideas

19

3.2.1 Three Columns Layout

Since the available space in an integrated development en-
vironment (IDE) is quite limited, it is necessary to think
about where to place the visualizations for the live feedback
and how much space to provide for them. One possibility
is to use an inline approach, such as it is done in the Light
Table EL placing the visualizations in the same space as the
source code (see figure 3.2).

var container, stats;
var camera, scene, renderer;

var mesh; w» THREE.Mesh
» _modelViewMatrix: THREE.Matrix4
» _normalMatrix: THREE.Matrix3
castShadow: false
» children: Array[@]
eulerOrder: "XYZ"
frustumCulled: true
geometry: THREE.BufferGeometry
» _listeners: Object
» attributes: Object
boundingBox: null
» boundingSphere: THREE.Sphere
dynamic: false
hasTangents: false
id: @
» morphTargets: Array[@]
» offsets: Array[8]
» __proto__: Object
__webgllInit: true
id: 8
» material:
THREE . MeshPhongMaterial
» matrix: THREE.Matrix4
matrixAutoUpdate: true
» matrixWorld: THREE.Matrix4
matrixWorldNeedsUpdate: false
name: "*
parent: THREE.Scene

init();
animate();

Figure 3.2: A screenshot from a video introducing the Light Ta-
ble. It shows an inline visualization. The source code is pushed
away by the detail visualization of a variable named mesh.

We decided against this approach, because with each line

! http:/ /www.lighttable.com/

Inline visualization is
one possibility for
placing feedback

 http://www.lighttable.com/
 http://www.lighttable.com/

20

3 Prototype

Inline approaches rip
apart the alignment
and less source code
is visible

Pharo creates for
almost each task a
new window, but that
provokes disorder
and conceals the
other windows

We use a three
column layout

consumed by the visualization, the alignment of the source
code is altered further and potentially important context
disappears from sight. An inline approach could also be
applied in the feedback view, but the main idea of that view
is that each result is aligned right next to its associated line
in the code view. An inline approach would destroy that
concept.

Another possibility is to use some vertical space of editor,
as it was done by the canvas view in the SuperGlue en-
vironment presented by McDirmid| [2007], where the visu-
alizations are appended at the bottom in a separate field.
However, todays monitors usually have an aspect ratio of
16:9 or 16:10 and offer more horizontal than vertical space.
That implies to rather use up the horizontal than the verti-
cal space.

In Pharcﬂ an IDE wich provides immediate feedback, for a
high number of tasks a new indivudal window is created.
The windows can be placed wherever the user wants to
place them. We believe this solution is open for disorder
caused by the user and not properly arranged by its own.
Moreover, whenever a new additional window is created,
it overlaps existing ones and hides their content.

Finally, we decided to use a three column layout, like it is
used in the newly published Swift Playgroundﬂ We took
the old prototype and added a third column, which we call
detail view, for the detail visualizations. Starting from left,
the code view is still located in the first column and the
feedback view from the old prototype in the second one.
Using this layout, we have to think about how to split the
available space between these three different views. Since
the required space for each view can change depending on
the current situation, we made the columns resizable.

*http:/ /pharo.org/
*https:/ /developer.apple.com/swift

http://pharo.org/
https://developer.apple.com/swift/

3.2 Initial Design Ideas

21

Figure 3.3: The Ul is divided into three columns. From left to
right the different views: code, feedback and detail.

3.2.2 Each Variable in Its Own Frame

Our goal is enabling a detail visualization with possible in-
teraction for each variable. In our prototype each visualiza-
tion is opened in an own “private” frame by clicking on an
interesting value in the feedback view. This frame is, when
opened for the first time, positioned at the same height as
the associated line, pushing aside overlapping frames. In
case the user wants to open an already existing frame, the
existing frame becomes repositioned to the position of the
associated line. We use this repositioning to point out the
link of the frame, which is currently of particular interest.

Each frame consists of a menu bar and an area for the ac-
tual detail visualization underneath. The menu bar con-
tains the menus shown in figure 3.4/and provides function-
alities such as switching between different visualizations,
filtering of specific values or closing the detail visualiza-
tion.

There are two main arguments for our “independent frame
concept”: First, every detail visualization having its own
frame results in a clear visual separation of all visualiza-
tions. In addition, establishing a link to the code view
as well as the feedback view becomes less difficult. Sec-
ond, every detail visualization can be adapted indepen-
dently from the rest. The visualization in one frame can
be changed without influencing the others.

Furthermore, it is still possible to add global functionality,
affecting all frames, without additional work. The disad-
vantage of this solution is, that each frame and menu-bar
takes up a bit of the limited space. Comparing the advan-
tages and the disadvantages of this approach it seems to us
that the idea of separate frames is worth to be explored.

Each variable is
created in its own
personal frame with
its own settings and
options

Menu bar offers
diverse
functionalities to
adapt visualizations
and the shown
content

There is a clear
visual separation of
all visualizations and
individual adaption is
possible

22

3 Prototype

Each frame offers
further functionality
such as dragging or
resizing

<]r] Y (VX

Qlral *] [«]¥]

Figure 3.4: One of the first ideas for the design of the frame. On
the left side of the frame are the two buttons for the navigation
and above them the associated variable name of the frame. On
the right side we put the other buttons for the filter menu, option
menu, minimization and closing. Right next to the frame you
find the designs for the filter and option menu. At the top is the
filter menu, designed like the search menu in the Brackets editor.
Beneath that is the option menu, containing possible visualiza-
tions and options.

All frames have further functionality. For example, to con-
form the height and position of each frame to the current
situation, they can be resized and dragged. When drag-
ging a frame to the position of an other frame, they are au-
tomatically positioned side by side, which enables a better
comparison between them.

The menu bar provides one more feature: a navigation
function for nested data types, similar to the navigation on
websites. When a nested property of an object is opened,
the navigation can be used to switch to the visualization of
the parent object and backwards. This navigation function-
ality has to be implemented for each visualization indepen-
dently and for several ones it does not make any sense to
implement such functionality. Due to a lack of time we did
not implement this functionality but reserved space for it
and kept the idea in our design, in order to add it later on.
The set of possible interactions with an actual detail visual-

3.2 Initial Design Ideas

23

ization depends on its programmer.

Offering numerous features and possible interactions to the
programmer represents a trade off. On the one hand, it can
increase the value of visualizations and, e.g., help the pro-
grammer to find errors and bugs. On the other hand, the
user can become too distracted by the visualizations and as
a result uses too much time to interact with them. During
this time, the programmer does not write any source code.
We took that risk into consideration and still believe that
offering features to adapt a visualization and the dis-
played information provides more advantages than disad-
vantages.

3.2.3 Linking the Three Columns

In his talk “Inventing on Principle”, Victor [2012b] men-
tions the necessity of a connection between source code and
its output. When using live programming to provide im-
mediate visual feedback, it is also important that the user
can see the link between the visualizations and the used
data. Without that link, the feedback is of no use to the
user. He does not know on which data the visualization is
based.

A link between

source code and its
illustrated feedback

is important

Figure 3.5: The screenshot illustrates the missing link from the code and feedback view
to the detail view. The black arrows represent an established link between each line in the
feedback and code view. The red arrows mark the missing link from the feedback and code

view to the detail visualizations in the detail view.

In Kurz’ prototype this link could be established without

24

3 Prototype

By introducing the
detail view in a third
column the
establishment of a
link between all
views becomes more
complicated

To create a link we
use highlighting,
displaying of the

variable name and
connecting lines

such as used in the
version editor in
Xcode

Synchronized
scrolling between the
detail view and the
other views makes
no sense

effort, since the visualizations and their associated lines in
the code view are in a line-to-line relationship, as you can see
in figure Additionally, the corresponding line in the
source code is highlighted while the mouse is over an visu-
alization.

Unfortunately, it is not that simple when considering our
detail view. One problem is the increased amount of space
necessary for appropriate detail visualizations, in compar-
ison to the ones in the feedback view. As a result, the line-
to-line concept can not be applied for our detail view (see
figure[3.5). Even in case that a visualization is created at the
same line, the distance to its corresponding line in the code
view prevents the user from recognizing the link without
difficulties.

We came up with multiple solutions to make the link be-
tween the three views more transparent. First, we had the
idea to use highlighting like it is done in the prototype by
Kurz. While the mouse is tracked over an element in one
view, the corresponding parts in the other views are high-
lighted. Second, each frame contains the associated vari-
able name. Unfortunately, this method connects only the
code and detail view and there can be a lot of independent
variables with the same name. Therefore, we planned in
addition to render lines in order to connect a line in the
feedback view with its associated frame in the detail view.
We perceived this approach in the version editor of Xcode.

These lines are only visible while the focus of the program-
mer lies on a concrete frame or line. Through the already
existing link between the code view and the feedback view,
the link between the code view and the detail view is also
improved. By combining these features we wanted to es-
tablish a transparent link between all three views.

Additionally, another problem is caused by using an in-
creased amount of space for each detail visualization and
enabling the dragging of them. The scrolling between
the code and feedback view can be synchronized because
of their line-to-line relationship. In contrast, synchroniz-
ing the detail view with the others is problematic. After
scrolling down to another frame in the detail view, multiple
lines of the code and feedback view are no longer visible.

3.2 Initial Design Ideas

25

The other way around, when scrolling in the code or feed-
back view, the same detail visualization stays in the field of
vision far too long.

Xcode has a similar problem in its version editor. For exam-
ple, whenever the newer version of a function is as twice as
long as the old one, synchronized scrolling can cause an
undesired result. The same function could be still visible
on one side, while being already out of the field of vision
on the other. This problem is solved by a simple mecha-
nism. When scrolling in the version with the larger part
of code (our detail view), scrolling in their version with
shorter parts (our code and feedback view) is comparable
slower and vise versa. We included this method in our de-
sign, but unfortunately had not enough time to implement
this feature. Furthermore, whenever all lines of code asso-
ciated with a detail visualization are no longer visible, the
detail visualization should be moved out of the way auto-
matically to open space for other detail visualizations.

3.2.4 Grouping of Data Types and Their Detail Vi-
sualizations

Higher level program languages always have multiple data
types. For some data types using the same detail visual-
izations is reasonable and they can be grouped together,
for others it makes sense to divide them into different
subtypes. Before considering to design detail visualiza-
tions, splitting and grouping of data types is advantageous.
Thereby, an individual set of visualizations can be created
for each group. Additionally, one of the visualizations of
each group has to be selected as the standard visualiza-
tion, which is created when a user wants to open a detail
visualization for a variable of this group. The visualization,
which is most likely useful in common cases, should be se-
lected.

JavaScript basically incorporates the following data types:
object, array, number, string, boolean, undefined
and null. We decided to create detail visualiza-
tions for these different data types but to do a fur-
ther distinction between strings and HTML, as well

A solution is to adapt
the speed of scrolling
respectively for each
view

We perform a
grouping and splitting
of the JavaScript
data types and
assign each group a
standard
visualization

Arrays are split into
one, two and
multidimensional
arrays

26

3 Prototype

Undefined and null
are grouped together

A more graphical
representation,
illustrating more
context is necessary

as between one dimensional, two dimensional and
multidimensional arrays. We distinguish between
these types of arrays, because of their different grade of
nesting. Thus, there are diverse possibilities to visualize
them. Furthermore, we group undefined and null together
since we do not add any visualizations for both of them.

Of course there could be done further distinctions, in case
of too many visualizations. For example we could divide
our number visualization group into groups such as: plots,
textual representations, bar charts and so forth. However,
we do not need such a distinction, since our target is not
to optimize our prototype for switching between hundreds
of visualizations, as it would be necessary for an actual live
coding tool. We want to research how much detail visual-
izations and the ability to switch between them assists pro-
grammers with their programming tasks. For that we do
not need such a high number of visualizations.

We came up with visualizations for each of our selected
groups, except for undefined, null and boolean and explain
our design decisions for the visualizations of data types we
implemented in detail: number, object and HTML.

Number Visualization As shown by |Victor| [2011] multi-
ple visualizations, with diverse levels of abstractions, exists
for a variable of type number. One possibility is a textual
representation, visualizing an exact value as the result of a
term, like it is done by |[Kurz|[2013]. This visualization pro-
vides the information whether a term returns the expected
result. It hides information such as the general trend of the
value, previous values or intermediate results within the
term. A different visualization, which includes more infor-
mation about the context, is necessary.

Unfortunately, including context, such as the value changes
within a loop, can induce space problems. We came up with
two designs, showing information with different levels of
abstraction:

e A hierarchical list which contains all value changes ap-
plied within the scope of a number variable. This vi-

3.2 Initial Design Ideas

27

varName
<> Y& [(VI[X
neu
Iteration Value Line
1 - undefined 4
2 wis 6
3 43 9
4 2/5 6
5 -18 21 U
6 »5/5 28
7 112 29
8 3/5 6
9 -7 21
10 »5/5 28
1 123 29

Figure 3.6: The figure shows a hierarchical list divided into the
three columns: Iteration, Value and Line, containing all changes
of a variable over its whole scope.

sualization provides the user with the information in
which line a new value was applied, the exact value
and in case it happens within a loop, the number of
the corresponding iteration. Therefore, as shown in
tigure the list is divided into three columns: iter-
ation, value and line. In the iteration column the user
can hide unessential information or look at (nested)
loops in more detail, by closing and opening of itera-
tions. Examples for another possible use are the com-
parison of the exact results after each iteration of a
loop or the identification of an unintentional use of a
global variable.

So, we identify three important design decisions
when using a hierarchical list: the shown content of
the initial hierarchical list, the effects of opening and
closing loops and the order of the applied changes
within the scope of the associated variable.

When a number visualization is opened by clicking

A hierarchical list
visualizations divided
into the columns:
iteration, value and
line

28

3 Prototype

Trade-off between
necessary number of
user interactions and

amount of potential
unnecessary
displayed information

We decided for
higher amount of
information

Order of execution
path vs order of
appearance

Decided for order of
appearance

A graphical
illustration in form of
aplot

on a value in the feedback view, which is assigned
within a (nested) loop, all loops and iterations con-
taining the assignment are opened automatically. We
assume that the context of this specific change is of in-
terest for the user, since it was used to open the detail
visualization. Thus, we anticipate less necessary in-
teractions till the required information are displayed.

There is a trade-off relationship between the neces-
sary number of interactions, to find the information
of interest, and the amount of potentially unnecessary
displayed information. For example, when opening a
closed loop, it is possible to increase the amount of in-
formation in one step more or less.

One option is to visualize all applied changes during
each iteration. Another option is to visualize all itera-
tions as closed loops by showing just the last assigned
value after each incrementation. When using the sec-
ond method, the user has to open the closed loops of
interest on his own, potentially leading to more nec-
essary interactions. To reduce the number of neces-
sary interactions, we decided for the first option and
accepted a larger amount of information. A future
user study is necessary to show if users prefer rather
a large amount of information and less interactions or
vice versa.

The last design decision is about the order of the ap-
plied changes within the scope. There are two pos-
sibilities to sort the results: order of execution path
and order of appearance. In this visualization the or-
der of appearance is used, which yields the advantage
that all calls of a specific function and the resulting
changes to a variable are grouped together. Again, it
is not clear whether this is the better choice or not and
a user study is required to determine the preferable
option.

A plot which also displays all value changes applied
within the scope of a variable (see figure 3.7). This
visualization provides a more graphical view by plot-
ting the development of a variable and its changing
values, sorted in the order of appearance. Through
this view the detection of outliers is simplified and
the programmer can check if the general trend looks

3.2 Initial Design Ideas

29

varName

right. Such a graphical view could be useful, e.g., to
check the implemented flight path of an object (gal-
lons example in swift playgrounds displays a plot to
illustrate the flight path of a zeppelin). We did not
implement this visualization yet.

One problem of this visualization is that the scale is
determined by the highest values on the y-axis and
the number of changes (x-axis). That bears the risk to
prevent the user from getting any concrete values on
specific parts of the program. Therefore, we enable
a zoom in both dimensions at the same time at one
point of interest. This can be also used to look at a
specific intervals, such as a loop. Furthermore, the
plot provides more concrete information, such as the
line number or the exact value, by moving the mouse
over a specific point on the plot. This method limits
the amount of unnecessary information displayed at
the same time and the visualization is still capable of
providing exact values and information.

<> Y& (VX
140 QQ
105
70

S

= 35

s

0
-35
C
-70
0123 456 7 8 91011121314 1516 17 18 19 20 21 22 23
Change

Figure 3.7: A plot which contains all value changes of a variable.
The values are located on the y-axis, the number of the current
change is located on the x-axis. Each point in the plot marks a
change. The magnifiers can be used to zoom in or out.

This visualization is just one of many possibilities.
Especially for quantitative data (in our case num-

Zoom control
enables user to
change the level of
abstraction and
consider specific
parts

30

3 Prototype

Objects can have
deeply nested
properties

Objects are
visualized in form of
a hierarchical list

For all properties
except the ones of
type object an extra
detail visualization
can be opened

bers) exist plenty of graphical representations such as
quantile plots, histograms or visualizations for multi-
dimensional data spaces. An example of a tool for the
visualization of multidimensional data spaces is Par-
allel Coordinates introduced by [Inselberg and Dims-
dale [1990]. It represents multidimensional data in a
two-dimensional visualization. Plenty of other use-
ful visualizations are presented by Tufte [2001] in his
book “The Visual Display of Quantitative Informa-
tion”.

Object Visualization An object in JavaScript can contain
an unlimited number of properties of each data type. For
instance it can contain, multidimensional arrays or objects,
which possibly contain an object element on their own.
Since it might be just one or two properties which are of
interest for the programmer, it is important to limit the
amount of displayed information. In addition, all top-level
properties and nested ones are also variables. A program-
mer can access them, change their value or pass them to a
method.

We came up with a hierarchical list visualization where
each property of type object can be opened in the same
frame. Properties of other variable types are, when opened,
created in a complete new frame with the standard detail
visualization of their group. Each property is visualized
in a private line, containing the name of the property and
either an exact value or a preview. A preview is used for
properties, such as arrays or HTML elements, which are
opened in a new detail frame and can not be compressed
to a specific value. It displays information about a property
without creating an extra detail view. One benefit of our vi-
sualization is the possibility to look up all offered functions
and accessible variables of an object, without the necessity
to use a documentation. That matches one of the principles
used for the Light Table: ”"You should never have to look
for documentation” [Granger].

Finally, we added one additional detail information to our
design. The first property of an object is a list, consisting
of all variables which have a pointer to this object. This is

3.2 Initial Design Ideas

31

varName

<> V& (VX

properties: 9 ﬂ

» pointer: [buchC1, buchC4..]

name: “Wenz: Javascript-Rezepte”

nr:*3-89842"

kurz: “Christian Wenz JavascriptRezepte, 2001 Galileo Press”
» lang: “Christian Wenz JavascriptRezepte. 2001 Galileo ..
grafik:"bla.png”

preis: 24,50

anzahl: 36

reduziert: false

Figure 3.8: Visualization of an object in a hierarchical list form.
The first property contains all variables which have a pointer at
the visualized object.

used to show the variables which are directly influenced by
changing the selected object (see figure[3.8).

HTML Visualization JavaScript was primarily created to
work with HTML elements, to create and alter them. It can
access the DOM elements of a website with a list of selec-
tors. To simplify the adaption of HTML elements, jQuer
was created. It is a powerful library which assists with se-
lecting as well as changing elements and provides some ad-
ditional functionality. The result of these changes becomes
visible in form of a changed website. It contains new, al-
tered elements or additional functionality.

The process of website creation can be divided into a cy-
cle of three steps: positioning or appending an element
or functionality, reloading the page and finally checking
whether it is the desired result. The visualization can be
used to control the appearance of elements and their posi-
tion before appending them to a website, which is intended

*http:/ /jquery.com/

HTML visualization
simplifies the
creation of websites
and the positioning of
elements

http://jquery.com/

32

3 Prototype

: varName

; Y& (VIX
: | (MDN R s

- ZONES ~ WEB PLATFORM ~ TOOLS DEMOS CONNECT

Q

MDN » Web technology for developers > JavaScript
Introduction to Object-Oriented JavaScript

Introduction to Object-Oriented
| JavaScript

LANGUAGES @ %

Figure 3.9: The figure shows on the left a XML website request. The resulting HTML
string is assigned to a variable. On the right a frame and the detail visualization for the
HTML string is illustrated (the webpage).

HTML strings are
recognized and
rendered

to accelerate the creation of websites.

Our HTML visualization enables the user to look at one or
multiple elements immediately after they were created, by
rendering them into their detail visualization frame. Even
a whole website can be displayed (see figure[3.9). Also pos-
sible is the usage of a CSS document for changing the style
of HTML elements.

Summary of Other Visualizations First, our string visu-
alization is identical to our number visualization, except
that it shows string values instead of number values. Next,
our array visualizations. One dimensional arrays are illus-
trated as a list, where each array element is initially closed
(not whole content is visible) and can be opened by the user.
We display a preview for each array element. For two di-
mensional arrays we have two possible visualizations: a hi-
erarchical list and a matrix. For the hierarchical list we also
display previews of the content of the arrays. Furthermore,
to illustrate the number of dimensions and to simplify ac-
cessing the shown values, we display colored brackets and
color their corresponding indices the same. The multi di-
mensional array is visualized as the same as a two dimen-
sional array. It is the same except for a deeper level of nest-
ing. Images of the other visualizations can be found in ap-

3.3 Preliminary User Study

33

pendix

3.3 Preliminary User Study

In her paper ”A Nested Model for Visualization Design and
Validation” Munzner| [2009] presents a model of visualiza-
tion creation. It contains the following four nested layers
in a descending order: domain problem characterization,
data/operation abstraction design, encoding/interaction
technique design and algorithm design. Each of these lay-
ers represents one category which threads the validity of
a design. In our case, the domain problem characteriza-
tion is pretty clear and refers to the task of simultaneously
programming and debugging. The next two layers are of
interest for the user study. In our case, they address the
challenge of using the correct data type for the right data
and for these data, appropriate visualizations.

Before we start with the implementation we wanted to as-
sure that our detail visualizations are meeting the require-
ments of Munzner| [2009]. Furthermore, we want to get
ideas for further improvements, expose confusing parts
and show that there are actual situations where our visual-
izations help to understand source code or solve a problem.

3.3.1 Setup and Tasks

To acquire brief feedback and some opinions on our visual-
izations we conducted a qualitative user study. Therefore,
we presented five people our concept and visualizations in
form of low fidelity paper prototypes. The persons were
on average between the age of 22 and 27 years old. All of
them used JavaScript once before but were not experienced
JavaScript developers.

The process was roughly the same for each participant. We
presented them an incorrect source code sample, explained
what the sample originally was supposed to do and tested
if they could solve the problem, or at least notice which
results were buggy through our visualization. We asked

Munzner presents a
model of
visualization creation

Conduction of a user
study to get some
feedback and assure
the potential of our
visualizations

34

3 Prototype

Process consists of:
presentation of code
scenario as well as
our visualizations
and interviewing
them

For each type of
visualization we
created an own

scenario

Difficult to find
meaningful scenarios
of a similar length as
well as complexity

them if there are not self-explanatory parts of the visual-
izations or frame. Furthermore we asked for suggestions
for improvement and let each participant explain our own
frame and visualizations to us. We used these explanations
to control, if the participants really perceived the visualiza-
tions as we supposed them to. In other words, if our mental
model, the system image and the users mental model match
[Norman) 2002]. Additionally, a couple of design problems
were exposed.

Due to the fact that all visualizations utilize their potential
in different situations we came up with a different setup
for each group of visualizations. An object visualization for
example is not useful when there is an error within a loop
consisting of numbers. However, we describe only the sce-
narios of visualizations we also implemented.

When creating scenarios for the different visualizations, it
is a challenge to keep them simple enough to be understood
easily and in an adequate amount of time, but to provide
at the same time situations where more detailed visualiza-
tions than in Kurz’ prototype become necessary. Hence,
the setups have a variable level of difficulty and a variable
needed amount of time to explain them. These differences
pose no problems for the user study, since we do not want
to compare the visualizations and its assessment. Rather
we want to get a short review for each one individually.

HTML Visualization Scenario We chose a simple setup
for the HTML visualization. A HTML image element which
uses the wrong CSS class is assigned to a variable. Thus, a
placeholder image was rendered into a detail frame instead
of the intended image in form of the Google logo.

Object/1-dim Array Visualization Scenario For the ob-
ject visualization we implemented a small online shop-
alike structure where one could add products to a sales list.
The error was, that the same product could be added to the
list of sales (in form of an array) multiple times.

3.3 Preliminary User Study

35

Number Visualization Scenario We used a small base64
encoding algorithm for the number visualizations. The al-
gorithm of a base64 encoding is quite short and in our mind
easy to understand. More important, no specific knowl-
edge of JavaScript is necessary to understand it. We im-
plemented an incorrect exit condition for one used while
loop, which led to a wrong result of the encoding.

3.3.2 Results

All participants stated that the visualizations have poten-
tial and could prove as useful in programming tasks. How-
ever, at the same time they pointed out some shortcomings
of our visualizations and partly suggested possibilities to
improve them. The number of shortcomings were quite
different for each visualization. Whereas the HTML visu-
alization was not criticized at all, four of the participants
found multiple flaws in the number visualizations.

First, the illustration of the location (line) for each initial
loop declaration in the hierarchical list visualization is con-
fusing. Second, all of the participants criticized the design
of an opened loop. The privation of a button to close the
loop again at only the line of the first iteration and not at all
iterations irritated them. Two of these participants also re-
marked that they expect the visualization to automatically
open all loops which contain the line used to open the detail
visualization. This was fortunately exactly as we designed
it but since we presented them only a paper prototype that
behavior was not observable. When we presented our plot
visualization, most of them remarked the absence of exact
values. They expected the visualization to provide in addi-
tion to the value and the line, also the number of iteration
(when the mouse is moved over a specific point in the plot).
All of the participants preferred the list visualization as the
standard visualization. They mentioned that in their opin-
ion the plot is less suitable for a majority of situations.

For our menu bar we also got some suggestions for im-
provement. It was not obvious for the participants that the
two arrows on the leftmost side of the menu-bar could be

Participants believe
the visualizations
look promising

lllustration of the line
of the initial loop
declaration is
irritating

Hierarchical list is the
preferred standard
visualization

The navigation icons
are not
self-explanatory

36

3 Prototype

Participants want to
open a new frame
through interaction
with the code view

Appending the
opening of a new
frame to the code

view is possible by
using the right click
menu of the code
view or offering of an
extra method

used as a navigation. None of them understood the use of
these arrows at first sight.

The last point of criticism was about our design decision
to initialize the creation of a visualization by clicking on a
line of interest in the feedback view. Four of five partici-
pants wanted to be able to open it somehow by interacting
with the code view. They did not find it obvious to use the
feedback view for that.

3.4 Final Design and Applied Changes

By using the results of our preliminary user study (see sub-
section we changed and improved our design of the
frame, the object and both number visualizations.

Most of the participants wanted to be able to use a line in
the code view to open a detailed visualization. Moreover,
they thought that there is no visual implication that open-
ing a detailed visualization is possible by clicking on a line
in the feedback view. To solve the problem of no visual im-
plication, the image of the mouse cursor is changed, from
the standard HTML cursor to a pointer cursor, whenever
the mouse is moved over a line in the feedback view. There
are multiple options where to add the functionality to open
frames in the detail view. Opening a new frame whenever
the user clicks on a line in the code view is not an option.
Programmers click around source code frequently, to cor-
rect or add something. This method would lead to numer-
ous of not required open frames. We came up with two so-
lutions: append it as an additional option to the right click
menu of the code view or implement an extra method such
as openDetailView(varName, line). For now, we added the
functionality just at the feedback view and eventually will
add it to the code view later on.

3.4.1 Frame Design

We did not change anything at the frame concept except
for the menu-bar. Additionally, we refined the style of the

3.4 Final Design and Applied Changes

37

View as Hierarchical List

View as Plot ‘Fi. |

selected Frame
all Frames

ol

ﬂ » varName

Y&V X

Figure 3.10: The new frame and menu design. The filter menu on the right, the option
menu on the left. The new option menu contains only the visualizations which are available

for a specific data type.

frame. First, we replaced the icons for navigation through
a history site navigation box as visible in figure This
provides more information on the currently displayed con-
tent as well as past one. This design should be more self-
explanatory than the two arrow icons. Additionally, we
chose to provide an individual option menu for each data

type group.

3.4.2 Detail Visualizations

As you can see in figure we adapted the following
parts of our hierarchical list visualization for numbers: we
added possible interaction to all iterations of an opened
loop, removed the number of the line which illustrates the
begin of loops and added a line coloring to simplify the
differentiation of the different lines in the list as well as
their contained values.

Frame concept
stayed the same but
we changed the style
of a frame and
eliminated the
vagueness

38

3 Prototype

ﬁ P newval

Iteration Line
L J 1/1
5
¥ 1/5
18
¥ 2/5
28
- 5/5 28

Value

(=]

112

Y&V X

Figure 3.11: Hierarchical list after opening it by clicking on a number value of interest
within a loop. All loops containing the line of value change are opened automatically.

ﬁ P parser

p -OPtions: properties: 1
4 _handler: properties: 4

m dom: [{raw: , data:

_done: true
m tagStack: []
 J _options: properties: 3
ignoreWhitespace: false
verbose: true
enforceEmptyTags: true
buffer:
_done: true
m elements: []
_elementsCurrent: 8

current: @

, type:

THVY X

Figure 3.12: Hierarchical list of an object. Each property has a preview of its value or the
whole value. Object properties are opened within this frame, changing the visualization.
The other properties have a frame icon and can be clicked to open a detail view for them in a

new frame

3.4 Final Design and Applied Changes

39

In the object visualization (see figure we removed the
list of pointers till we find a better way to visualize that
without using to much additional space. Finally, we added
the same line coloring to this visualization as applied for
the hierarchical list visualization for numbers.

40

3 Prototype

41

Chapter 4

Implementation

In this chapter we present the architecture of Kurz’ applica-
tion, the architecture of our enhancement as well as its com-
ponents and the integration into the old prototype. Since
we enhance the prototype developed over multiple itera-
tions by Heinen| [2012], Belzmann| [2013] and Kurz [2013]],
there are components we have to access in order to add our
detail view and its visualizations. For example, we use the
available structure which contains the feedback data from
the server or the update function for the views. By explain-
ing the architecture our prototype bases on, we get a gen-
eral understanding of how the program works.

After giving an overview about our general concept, its
components and their relation to each other, we give more
details about the management of frames and our detail vi-
sualizations.

4.1 Existing Foundation for Our Prototype

The first version of our live coding plugin for Brackets
was developed by |Heinen| [2012]. His prototype uses a
loop in combination with the intern eval function of
JavaScript, which evaluates and executes a given argument,
to create live feedback. Next, Belzmann| [2013] improves
the capability and performance of the system by discard-

We present our
newly added
components and the
existing foundation of
the prototype

42

4 Implementation

A client-server
architecture is used

Kurz implemented
LiveDataView and
LiveDataController
as a Model-View-
Controller

pattern

The
LiveDataController
manages the content
to display and when
to update the content
while LiveDataView
manages how and
where to display the
content

ing the idea of using the intern eval function of JavaScript.
Instead, his plugin uses a client-server architecture. Fi-
nally, Kurz [2013] modified the client by adding compo-
nents, such as the LiveDataView, LiveDataController and
LiveDataPane, implementing the feedback view and adapt-
ing the backend to remove some limitations.

All these modifications led to the current architecture:

The basic concept is the division of the program into a client
and a server, called backend. The client continually sends
a whole JavaScript file to the server and takes care of the
visualization process.

Therefore it consists of the major components: Main, Live-
DataView and LiveDataController, as well as multiple sub
components, such as LiveDataPane and LiveCodingEvalu-
ator. Each component is exactly one JavaScript file. Most
of the components are plugged together by Main. It has
access to the major components, creates the LiveDataCon-
troller and tells it, e.g., to use the LiveDataView as the dis-
play.

The LiveDataView and LiveDataController are following
the concept of the Model-View-Controller pattern. The
LiveDataController decides what content to display, when
to update the content and talks to the LiveCodingEvalua-
tor, which receives the messages from the server, in order
to obtain all necessary data. Afterwards, the LiveDataCon-
troller forwards the received data to the LiveDataView.
The LiveDataView defines for each piece of content its po-
sition and representation. It displays error messages, cre-
ates the line-to-line layout and decides for each line the
displayed content as well as its appearance. Furthermore,
it attaches event handler for possible interactions and up-
dates the view whenever the controller tells it about an oc-
curred change. To sum up, every feedback and additional
information is visualized by the LiveDataView. The compo-
nent LiveDataPane supports LiveDataView, by synchroniz-
ing the scrolling between the two views as well as adding
new views (feedback view).

The server instruments and executes the code and finally
sends the results (runtime state of the program) back to the
client. Whenever new code is received by the controller

4.1 Existing Foundation for Our Prototype

43

component, it communicates with the client, it spawns a
new child process in form of an ExecutionManager. An
ExecutionManager instruments the code, creates a sandbox
and spawns two new child processes on his own. One child
process generates a source map which maps from the in-
strumented code to the original position in the source code
and vice versa. The source map is necessary because un-
caught exceptions can falsify registered source code loca-
tions. The other process executes the instrumented code.
By creating a new child process, each time new code is re-
ceived, the crash of the whole program can be prevented.
Usually, in case the executed code has an infinite loop or
does not stop for other reasons it would be necessary to
shut down the whole program to fix it. However, since
each child process can be shut down independently, with-
out influencing the client, the actual program remains re-
sponsive.

The server uses child
processes to execute
newly received code

One child process
generates a source
map and one
executes the code

Source Map
Generation

) Websocket =
Client .‘..."T‘..s.c.‘c..{.:. » Cantroller P

Execution Manager

- Spawns Runtime

» {code execution)

Source Map
Generation

Execution Manager

[Spawns

Runtime
{code execution)

Figure 4.1: The picture presents the server architecture of Kurz’ prototype. The controller
communicates with the client through a WebSocket protocol and receives its messages. In
case of newly received source code it spawns a new process named ExecutionManager. The
ExecutionManager also spawns new child processes, one for the generation of a source map

and one for the code execution.

The whole client-server communication, its message struc-
ture and setup, is an important part of the architecture.
Communication between the client and the server is estab-
lished by using a WebSocket protocol. Most messages are
sent in form of JSON strings and contain code, but there are
also control type messages to control the server.

Communication, in
form of JSON strings,
is established via a
WebSocket protocol

44

4 Implementation

Use of Node.js and
its modules e.g. for
the client-server
architecture and child
processes

Most needed
information for our
detail view are
already provided by
the foundation

type: "code",

code: code,

[options: options object],
id: 1id

The messages send by the server are mostly messages about
source code changes. The messages contain information
such as the number of iterations of a loop, a result of a
term or the associated line and column in the source code.
However, it can also send control messages such as error
messages. A more detailed description of the client-server
communication, the content and structure of the messages
and diverse server tasks can be found in Belzmann| [2013].
Plenty of functionalities, such as the instrumentation of
source code or usage of multiple processes, are realized by
third party modules. The most important ones are the fol-
lowing: ws, escodegen, esprima, contextify and child_process.
All of them are modules of the platform Node.js, which can
be used for server-side as well as network applications and
is built on Chrome’s JavaScript runtime. Ws (WebSocket)
enables the communication to the client. Esprima is used
to parse source code into an AST (abstract syntax tree). Es-
codegen can generate code out of the instrumented AST as
well as a source map. Contextify enables the execution of
source code in a sandbox and child_process to spawn new
child processes like it is done by the controller component
of the server.

These components build the foundation for our prototype.
They provide almost all important data we need for our
detail view and its visualizations. The messages contain,
e.g., the results of terms, the corresponding lines in the code
view or the number of iterations we need for our visualiza-
tions. LiveDataView and LiveDataPane provide us with a
foundation where we can attach our detail view and imple-
ment functionality such as the scrolling or updating of our
visualizations.

4.2 Newly Added Components

45

4.2 Newly Added Components

To realize our detail view and visualizations we added fur-
ther third party modules: escope, estraverse and htmlTok-
enizer.

Estraverse is used in connection with esprima and escope.
Through estraverse it is possible to move and search trough
an AST. The AST is created by the esprima parser. By us-
ing escope we acquire all scopes and can filter the scope of
specific variables, which is necessary for our number vi-
sualization. In addition, we believe that it could be pretty
useful for future visualizations and changes. Lastly, htmlTo-
kenizer helps to detect errors in HTML elements. Since we
add a third view to the surface and are interested in visual-
izing existing data, we mainly adapt, extend and make use
of the components LiveDataView, LiveDataPane and Live-
DataController.

Furthermore, we implement our own components to create
an architecture where it is possible to easily add an own vi-
sualization and adapt the functionality of frames as well as
visualizations. We add the following components to the ex-
isting foundation: FrameManager, FrameFunctionality, De-
tailVisManager as well as the various visualizations: Num-
berVisualization, ObjectVisualization and HTMLVisualiza-
tion.

We create our third view and implement the scroll func-
tions and resize functions for the widths of the views within
the LiveDataPane.

In the LiveDataView we implement all functions concerned
with the creation of a detail frame: mostly creating HTML
elements, adding classes to them and setting a CSS class).
In short, almost everything that changes the appearance
of the interface. In this component we had to adapt some
methods, such as the update function,toenable the im-
mediate update of our detail visualizations after each ap-
plied change.

First, the position of the associated line in the code view
and feedback view can possibly have been changed or
deleted with each update. Henceforth, we check if the asso-
ciated line to each detail frame is still at the same position.
In case the position changed or the line was deleted, we

Use of further third
party modules such
as escope.js for
getting all scopes of
an AST

Adaption of the
update and other
functions in
LiveDataView for our
third view

LiveDataView
requires functionality
from FrameManager
and
DetailVisManager

46 4 Implementation

search for our associated line in a certain radius. Second,
the data of our line can possibly have changed. Thus, each
open detail frame compares their current data with the new
ones, whenever the function is called. In case of a differ-
ence, the visualization is adapted automatically.
Additionally, LiveDataView is the link to the newly added
components: FrameManager and DetailVisManager. By us-
ing these components we separate large sections of the de-
tail view functionality from the architecture of Kurz’ pro-
totype. Thus, new functionality can be added more easily
and changing the behavior of the detail view and its ele-
ments becomes easier.

pem e AN FBQUIFE- - - === === === == === === oo » LiveDataView . T T (e — LiveDataPane
£ requires j L requires l
DetailVisManager > FrameManager
L’ l requires requiresfexports
y |
DetailVisualization DetailVisualization DetailVisualization requires FrameFunctionality

/

Figure 4.2: The figure shows the LiveDataView as well as our newly added components and
their relationship to each other. LiveDataView is our major interface to the already existing
architecture. It requires Detail VisManager as well as the FrameManager and therefore has
access to all their exported methods. On the right sight the FrameManager is shown. It
requires and exports all functionality provided by FrameFunctionality. The FrameFunc-
tionality requires the FrameManager since it needs the global frame attributes and func-
tionality. On the left side is the DetailVisManger, which requires all Detail Visualizations
and exports a method called createDetailVisualization. Each detail visualiza-
tion has to require the FrameManager to keep it informed and to provide information such
as the used data for the visualization. Each DetailVisualization has the possibility to require
the LiveDataView to use its offered functionalities which can assist with the creation of a
new visualization.

We offer further functionality the programmer can use
to create his own visualizations. First, as already men-
tioned we use escope to get all existing scopes of the cur-
rently opened JavaScript file. We then implemented a

4.3 Frame Management

47

function called getScopeOfvariable. This method is
called with a line number and a variable name as pa-
rameters. It determines the whole scope of the cho-
sen variable. Second, we implemented a method called
getVarValuesLinesDepth. This method provides in-
formation on the changes of a variable within its whole
scope. For example it contains all applied value changes
and their corresponding lines in the code view. How-
ever, this method does not work for variables which are
created and incremented in the header of a loop declara-
tion. In addition, there is other functionality such as the
method getLineDataForAllIterations, which pro-
vides for all iterations the results at a certain line in the
feedback view, respectively code view.

4.3 Frame Management

The FrameManager contains all global attributes which are
used to manage the frames, such as an unique identifier
for each frame. It has an up-to-date list of existing frames,
checks for overlaps and has access to all functionality pro-
vided by FrameFunctionality. Most of these functions are
just forwarded to the LiveDataView. Furthermore, he has
information about each frame such as the currently used
data and whether the visualizations refers to multiple lines
of code or just one line.

The component FrameFunctionality exists as a place for
all additional frame functionality a programmer wants to
add. We did this separation of the FrameManager and
the FrameFunctionality to clearly separate the management
and global attributes from the set of additional function-
ality. Additionally, it limits the amount of source code to
check in case of an undesired behavior.

4.3.1 Frame Creation

The creation of a frame is initiated by clicking on a line in
the feedback view. In LiveDataView all necessary HTML
elements for a new frame are created: the menu bar and its

FrameManager
contains global frame
attributes and
accesses and
forwards all
functionality from
FrameFunctionality

Creation of frames is
triggered in
LiveDataView

48

4 Implementation

All visualizations are
registered at the
DetailVisManager

menus, as well as the extra space for the detail visualiza-
tion. All methods and global attributes necessary for the
frame creation, to guarantee uniqueness or to register to an
event handler, are provided by the FrameManager and in-
directly by the FrameFunctionality. During the creation of
a frame, the LiveDataView checks the data type of the con-
cerned variable. With that knowledge it orders the Detail-
VisManager to create the detail visualization for the frame.
Here we also distinguish between the data type groups we
defined in section

4.4 Visualization Management

The DetailVisManager manages all defined data type
groups and their visualizations. It knows of all detail vi-
sualization files and can use them to create a new detail vi-
sualization. The DetailVisManager also offers this function-
ality to the LiveDataView. We created the DetailVisManger
with the target to simplify the adding, deletion and change
of visualizations, without the need to apply considerably
changes in other components. It also offers the functional-
ity to change the currently used standard visualization of
each group.

4.4.1 Data Type Dependent Visualization

Each visualization is represented by an own component
which can consists of multiple JavaScript files. Yet, one file,
which can be required by the DetailVisManager and is able
to control the whole visualization process, is necessary. In
case a programmer wants to add his own detail visualiza-
tion, he can implement it and add it to its belonging group.
The same visualization can be possibly added to multiple
groups. The DetailVisManager has an array variable for
each visualization group which contains all the visualiza-
tions belonging to this group. If a detail visualization is re-
quested by the LiveDataView, it searches for the concerned
group, get its current standard visualization and starts the
creation of that visualization.

49

Chapter 5

Discussion of our
Prototype

5.1 Capabilities and Advantages

Our enhancements of the prototype by Joachim Kurz intro-
duces new capabilities and advantages. First, in case the
provided feedback of the second column is not sufficient,
the programmer has now the possibility to open a detail vi-
sualization which is located in the third column. He can
perceive feedback in other forms than textual representa-
tions, which can illustrate additional and contextual infor-
mation.

By displaying each visualization in its individual frame, we
enable the programmer to adapt each visualization with-
out influencing the others. At the same time it ensures a
clear separation between the open visualizations. In ad-
dition, these frames can be dragged to other positions to
enable a better comparison between visualizations and the
programmer is able to adapt the size of each frame to his
requirements.

Another advantage of our prototype is that the user can
choose in each situation the visualization which fits the
best. For the case that no representation fulfills the require-
ments, the foundation of our prototype offers a program-
mer to implement his own visualizations and add them to

50

5 Discussion of our Prototype

Changing the type
grouping is
cumbersome

Detail visualizations

for multiple
assignments in one
line are not possible

the existing sets.

We provide functionality to simplify the implementa-
tion of new visualizations, such as a method called
getScopeOfVariable which returns the whole scope of
a variable.

Finally, we added the live programming feature to our
detail visualizations. Whenever parts of source code are
changed, our detail visualizations check for differences and
adapt accordingly. In addition, whenever the program-
mer clicks through the iterations of a loop, the affected
visualizations update their content. If the programmer is
not satisfied with the standard update behavior after code
changes or the iteration of a loop was changed, he can use
his own implemented update functions for his visualiza-
tions.

5.2 Limitations and Shortcomings

Our enhanced prototype has a couple of limitations. Some
of these limitations we took over from Kurz’ [2013] proto-
type. First, the application can only capture console output
but no input. Second, feedback is only provided for lines
consisting of an assignment. Furthermore, the plugin does
only work with Node.js compatible programs. For more
details about these see Kurz’ [2013] and Belzmann's [2013]
theses.

Our enhancements introduce some new limitations. First,
the programmer has to use our grouping of data types. The
grouping can not be enhanced by just adding a new group.
Changes to parts of the DetailVisManager, LiveDataView
as well as all detail visualizations, which use our current
grouping, are inevitable.

Second, the prototype has problems with multiple assign-
ments in one line. Due to the concept that each line has
exactly one attached frame, detail visualizations are only
possible for one variable of each line. Currently, when the
user initiates the creation of a frame, we check if a frame
already exists for that line.

To open multiple detail visualizations for one line in the
feedback view, we have to save the position of each value

5.2 Limitations and Shortcomings

51

in that line and adapt the identifiers accordingly.

One shortcoming, already mentioned by the participants of
our preliminary user study, is the absence of possibilities
to open visualizations by interacting with lines in the code
view. This has nothing to do with our architecture and can
be added later on without necessary changes to it. We al-
ready proposed possible solutions for that in section 3.4}
Another limitation is the necessity to reload the extension,
every time an user changes the currently shown JavaScript
file. In the course of events our attached resize and drag
handlers become partly inoperative.

Further, our number visualization has some problems and
in some cases it does not work appropriate.

Finally, visualizing a representation which contains a huge
amount of data leads to performance issues. Visualizations
such as our object and HTML ones typically pose no prob-
lems, cause they refer to the data of one assignment and
not to the data of the whole scope. In contrast, our num-
ber visualization consists of all value changes within the
whole scope of a variable. There is a performance degra-
dation due to the necessity to collect all data as well as by
the creation of the visualization itself. Moreover, each event
handler attached to the visualizations decreases the perfor-
mance. For example, the creation of a visualization for a
variable within a nested loop of depth 2, where the outer
loop has 100 and the inner one 10 iterations, already takes
a few seconds and there is a small delay when interacting
with it. However, the performance of our prototype should
be sufficient for a user study. We describe a potential future

user study in

User interaction to
open a detail
visualization is only
possible in the
feedback view

lllustration of a large
amount of data and
usage of many event
handler leads to
performance issues

53

Chapter 6

Summary and Future
Work

In this chapter we shortly summarize our results and con-
tributions. Afterwards, we present possible future work,
possible improvements for the live coding editor and a po-
tential future user study.

6.1 Summary and Contributions

First, by considering multiple live coding prototypes and
tools, we gathered design ideas and guidelines for our visu-
alizations. Moreover, we figured out some requirements for
our detail view by looking at Kurz’ [2013] prototype. After-
wards, we grouped and split the data types of JavaScript.
We then came up with designs of detail visualizations for
all these groups and a layout for our extension. We decided
to use a three column layout, where each visualization be-
longs to its own unique frame.

Furthermore, we came up with an use case for each group
and conducted a small qualitative user study by using these
scenarios. After we got feedback and improved our design,
we enhanced the prototype by Kurz, implemented the de-
tail view as well as three detail visualizations and extended
the live coding functionality to our frames and their detail

Gathered ideas,
designed our layout
as well as detail
visualizations and
finally implemented
the detail view and
three visualizations

54

6 Summary and Future Work

Diverse possibilities
for enhancement

Rest of designed
visualizations and
functionalities need
to be implemented

visualizations. We implemented our extensions in a struc-
ture that enables a programmer to enhance the prototype
with his own visualizations and provide functionalities to
assist him. In addition, the user can switch between visu-
alizations of the same group to find a suitable one for each
situation. Also interactions, such as filtering of information,
are possible. Finally, we described limitations we inherited
from the previous prototype as well as limitations of our
extensions.

Our main contributions are:

e Determination of the requirements for our prototype
by looking at the old one, as well as collection of de-
sign ideas by considering other live coding tools and
prototypes.

e Creation of visualizations for all data type groups and
conduction of a preliminary qualitative user study for
these designs.

e Implementation of the detail view, the live coding ca-
pability for detail visualizations, our final detail vi-
sualizations and the foundation for further visualiza-
tions.

6.2 Future Work

There are still possible improvements and tasks for our pro-
totype which have not been realized yet. The capabilities
and performance of the prototype can be improved further,
issues need to be fixed and user studies are yet to conduct.
First, numerous designs for visualizations are yet to imple-
ment. Second, there are still parts of the application which
can be enhanced.

The participants of the user study wished to be able to
initialize the creation of a detail visualization by interac-
tion within the code view. Therefore, we already presented
some design ideas in section 3.4} These ideas have not been
implemented yet. There are other functionalities we in fact

6.2 Future Work

55

designed but still not integrated in the new version of the
prototype: the navigation, dimension reduction of arrays,
recognition of changes in the data type of a variable within
its scope, lines from the feedback view to a frame to em-
phasize the link (see section as well as the planned
scrolling behavior between the detail view and the other
views.

Furthermore, while observing the Light Tableﬂwe came up
with another advancement of the object visualization. We
want to add the available online documentation, containing
function descriptions and variables, to the object visualiza-
tion.

Another issue is the performance of the program. There
are diverse ways to improve the performance of our added
components. First, functionality, such as the determination
of the scope, could be handled by the server. Thus, the ap-
plication would stay responsive while child processes on
the server are occupied with these tasks. Another task,
which is resource-demanding and could be done by the
server, is the filtering of one specific scope out of the whole
set of scopes.

A further possibility to increase the performance is to refac-
tor the whole source code by minimizing the number of
necessary traverses through the Document Object Model
(DOM) as well as jQuery operations in general. These are
resource-demanding.

Finally, it is essential to test our enhanced prototype after
more refinements and implementing further visualizations
in a more defined user study than our preliminary one (see
B.3] “PPreliminary User Study]’). For example, it is not veri-
fied yet if there are situations where our visualizations im-
prove the debugging time and accuracy. We already came
up with an idea for a potential user study. A combination
of a screen and a video recoding can be used to collect as
much data as possible.

Moreover, more data can be achieved by letting each partic-
ipant fill out a questionnaire for each visualization. Ques-
tions of interest are for example, how useful the partici-
pants found the visualizations, the amount of illustrated
information or what kind of functionality is still missing

! http:/ /www.lighttable.com/

Adding of the real
documentation to the
object visualization

Outsourcing of
resource-demanding
tasks to the server

Reduction of the
number of jQuery
operations

 http://www.lighttable.com/

56

6 Summary and Future Work

Use for each
visualization an
individual scenario

or not necessary. Parallel to the screen recording, we could
measure the task completion time and how frequently the
different Ul elements are used. UI elements of interest
could be the offered functionalities of our frame and our
detail visualizations. An additional idea is to measure the
number of interactions with each detail visualization. That
could show whether the visualizations need too many user
interactions and whether we have to reduce or increase the
amount of displayed information. As in the preliminary
qualitative user study with paper prototypes, a different
setup for each group of visualizations is advisable. For our
implemented visualizations we already have some ideas.
In the scenario for the HTML visualization the participants
could create a prescribed website or adapt an existing one.
Here we can test how much faster participants can place
new elements and change their representation with the
help of our live coding tool in comparison to those with-
out. For testing our object visualizations, the participants
could develop a small program by using an unfamiliar API.
In this way we can test whether our object visualization as-
sists with the task of understanding a new API and with
the usage of all its offered functionalities. In addition, itis a
common task to use new unfamiliar libraries and it enables
us to check whether the participants need to pay less atten-
tion to the actual documentation.

Finally, an idea for an implementation task for number vi-
sualizations could be, e.g., a Base64 encoding. When im-
plementing this, number variables needs to be changed at
diverse locations of the program and within a loop over
many iterations. Another suggestion is to use a task where
the user has to simulate more graphical events such as the
movement and curves of a roller coaster.

57

Appendix A

Not Implemented Detail
Visualizations before

User Study With New
Frame

58 A Not Implemented Detail Visualizations before User Study With New Frame

4 > e YHVX

length: 5
w0 properties : 8
k1] properties -8
*[2]: properties: 8
LAE]E properties -8
»[4]: properties:8

Figure A.1: A list containing all elements of the array. We illustrate the number of
the elements at the top. Each element can be opened on its own and a preview is
displayed.

59

- oo YHVX

»[0]: 2 4,2 12, 16, 16, 20, 24, 28, 32, 32,...
»[1]: 1,2,1,9, 12, 12, 15,18, 21, 24, 24......
»[2: 24,2 12, 16, 16, 20, 24, 28, 32, 32,...
»[3: 2. 2 3, 12, 16, 16, 20, 24, 28, 32, 32,...

Figure A.2: A two dimensional array in form of a hierarchical list. The colored
brackets show how to access the visible elements and the dimension of the array.
Again, for each element a preview is displayed.

- oo YHVX

¥[0]: 2 4,2 12 16,16, 20, 24, 28, 32, 32,

[0 2
1] 4
2] 2
3 12
4] 16
[5]: 16
[6] 20
7] 24
[8: 28
[9] 32
[10]: 32
[11]: 36
[12] 4

Figure A.3: An open two dimensional array in form of a hierarchical list.

60 A Not Implemented Detail Visualizations before User Study With New Frame

ﬂ- » varName Yavx

(1]
[01 (1] (2] 3]
[0]: 2 1 2 2
[1]: 4 2 4 2
[2]: 2 2 1 3
[3]: 12 9 12 12
[4]: 16 12 16 16
[5]: 16 12 16 16
[6]: 20 15 20 20
[7]: 24 18 24 24
[8]: 28 21 28 28
(€l 32 24 32 32
[10]: 32 24 32 32
[11]: 36 27 36 36
[12): 4 3 4 4
Figure A.4: A two dimensional array in form of a matrix. For the use of the brackets
look at figure
ﬂ » varName Yavx
(1011)
v[0]: [0 "a" “a" 0,"a" ‘e
= 0: 0 "8, "a"
1. 0", R’
»2: 078" "¢
»3: 0 "a""d"
>4 08,

"e"
»[1]: 200 "b" “a", .., 200, "b" "e"
»[2]: (200, "c", "a"|, ..., 200, "c", "e"
»[3]: (200 "d", "a", ..., 200, "d" "e"
»[4]: [200, "e" *a", ..., 200, "e" "e"

Figure A.5: A multidimensional array. The form of representation is the same as in

figure

61

ﬂ » varName Yavx

Iteration Value Line

i - undefined &8

2 w5 94

3 »5/5 101

4 e 107
5 2/5 94

6 »5/5 101

7 " 107
8 3/5 94

9 »5/5 101

10 " 107

Figure A.6: A table which consists of the three columns: Iteration, Value and Line.
Has the exact layout as the number visualization before we improved and refined
it.

62 A Not Implemented Detail Visualizations before User Study With New Frame

R TOVYX

Value

- 2P

105

70

T
o1

2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 223
Change

Figure A.7: Our already presented plot visualization with the new Frame.

63

Bibliography

Ewgenij Belzmann. Utilization and visualization of pro-
gram state as input data in a live coding environment.
Diploma thesis, RWTH Aachen University, Aachen,
April 2013.

Joel Br, Vignan Pattamatta, William Choi, Ben Hsieh, and
Scott R. Klemmer. Rehearse: Helping programmers
adapt examples by visualizing execution and highlight-
ing related code, 2010.

William Choi, Joel Brandt, and Scott R. Klemmer. Rehearse:
Coding interactively while prototyping, 2008.

Jonathan Edwards. Example centric programming. SIG-
PLAN Not., 39(12):84-91, December 2004. ISSN 0362-
1340. doi: 10.1145/1052883.1052894. URL|http://doi.
acm.org/10.1145/1052883.1052894.

John D. Gould. Some psychological evidence on how peo-
ple debug computer programs. International Journal of
Man-Machine Studies, 7(2):151 — 182, 1975. ISSN 0020-
7373. doi: http://dx.doi.org/10.1016/5S0020-7373(75)
80005-8. URL http://www.sciencedirect.com/
science/article/pii/S0020737375800058.

Chris Granger. Light table. URL https:
//www.kickstarter.com/projects/ibdknox/
light-table.

Philip J. Guo. Online Python Tutor: Embeddable web-
based program visualization for CS education. In Pro-
ceeding of the 44th ACM Technical Symposium on Com-
puter Science Education, SIGCSE "13, pages 579-584, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1868-6.

http://doi.acm.org/10.1145/1052883.1052894
http://doi.acm.org/10.1145/1052883.1052894
http://www.sciencedirect.com/science/article/pii/S0020737375800058
http://www.sciencedirect.com/science/article/pii/S0020737375800058
https://www.kickstarter.com/projects/ibdknox/light-table
https://www.kickstarter.com/projects/ibdknox/light-table
https://www.kickstarter.com/projects/ibdknox/light-table

64

Bibliography

doi: 10.1145/2445196.2445368. URL http://doi.acm.
org/10.1145/2445196.2445368!

Bjorn Heinen. A live coding editor. Bachelor’s thesis,
RWTH Aachen University, Aachen, December 2012.

Peter Henderson and Mark Weiser. Continuous execution:
The visiprog environment. In Proceedings of the Sth In-
ternational Conference on Software Engineering, ICSE "85,
pages 68-74, Los Alamitos, CA, USA, 1985. IEEE Com-
puter Society Press. ISBN 0-8186-0620-7. URL http://
dl.acm.org/citation.cfm?i1d=319568.319582.

Alfred Inselberg and Bernard Dimsdale. Parallel coordi-
nates: A tool for visualizing multi-dimensional geome-
try. In Proceedings of the 1st Conference on Visualization
90, VIS "90, pages 361-378, Los Alamitos, CA, USA,
1990. IEEE Computer Society Press. ISBN 0-8186-2083-
8. URL http://dl.acm.org/citation.cfm?id=
949531.949588.

Andrew J. Ko and Brad A. Myers. Designing the why-
line: A debugging interface for asking questions about
program behavior. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’04,
pages 151-158, New York, NY, USA, 2004. ACM. ISBN
1-58113-702-8. doi: 10.1145/985692.985712. URL http:
//doi.acm.orqg/10.1145/985692.985712l

Joachim Kurz. Evaluating developer strategies in a live
coding environment. Master’s thesis, RWTH Aachen
University, Aachen, August 2013.

Sean McDirmid. Living it up with a live program-
ming language. SIGPLAN Not., 42(10):623-638, Oc-
tober 2007. ISSN 0362-1340. doi: 10.1145/1297105.
1297073. URL http://doi.acm.org/10.1145/
1297105.1297073.

Sean McDirmid. Usable live programming. In SPLASH
Onward! ACM SIGPLAN, October 2013. URL
http://research.microsoft.com/apps/pubs/
default.aspx?1d=189802. To appear.

Tamara Munzner. A nested model for visualization de-
sign and validation. IEEE Transactions on Visualization

http://doi.acm.org/10.1145/2445196.2445368
http://doi.acm.org/10.1145/2445196.2445368
http://dl.acm.org/citation.cfm?id=319568.319582
http://dl.acm.org/citation.cfm?id=319568.319582
http://dl.acm.org/citation.cfm?id=949531.949588
http://dl.acm.org/citation.cfm?id=949531.949588
http://doi.acm.org/10.1145/985692.985712
http://doi.acm.org/10.1145/985692.985712
http://doi.acm.org/10.1145/1297105.1297073
http://doi.acm.org/10.1145/1297105.1297073
http://research.microsoft.com/apps/pubs/default.aspx?id=189802
http://research.microsoft.com/apps/pubs/default.aspx?id=189802

Bibliography

65

and Computer Graphics, 15(6):921-928, November 2009.
ISSN 1077-2626. doi: 10.1109/TVCG.2009.111. URL
http://dx.doi.org/10.1109/TVCG.2009.111k

Donald A. Norman. The Design of Everyday Things. Basic
Books, New York, reprint paperback edition, 2002. ISBN
0-465-06710-7.

David Saff and Michael D. Ernst. An experimental eval-
uation of continuous testing during development. SIG-
SOFT Softw. Eng. Notes, 29(4):76-85, July 2004a. ISSN
0163-5948. doi: 10.1145/1013886.1007523. URL http:
//doi.acm.org/10.1145/1013886.1007523.

David Saff and Michael D. Ernst. An experimental evalu-
ation of continuous testing during development. In IS-
STA 2004, Proceedings of the 2004 International Symposium
on Software Testing and Analysis, pages 76-85, Boston, MA,
USA, July 12-14, 2004b.

James L. Snell. Ahead-of-time debugging, or programming
not in the dark. In Proceedings of the 8th International Work-
shop on Software Technology and Engineering Practice (STEP
'97) (Including CASE "97), STEP '97, pages 288—, Wash-
ington, DC, USA, 1997. IEEE Computer Society. ISBN
0-8186-7840-2. URL http://dl.acm.org/citation.
cfm?i1d=829539.831969.

Steven L. Tanimoto. Viva: A visual language for
image processing. Journal of Visual Languages and
Computing, 1(2):127 — 139, 1990. ISSN 1045-926X.
doi: http://dx.doi.org/10.1016/51045-926X(05)80012-6.
URL http://www.sciencedirect.com/science/
article/pi1i/51045926X05800126.

Edward R. Tufte. The Visual Display of Quantitative Infor-
mation. Graphics Press, second edition, 2001. ISBN
0961392142.

Bret Victor. Ladder of abstraction, 2011. URL http://
worrydream.com/#!2/LadderOfAbstraction/\

Bret Victor. Learnable programming, 2012a. URL http:
//worrydream.com/#!/LearnableProgramming/.

Bret Victor. Inventing on principle, 2012b. URL http://
vimeo.com/36579366/

http://dx.doi.org/10.1109/TVCG.2009.111
http://doi.acm.org/10.1145/1013886.1007523
http://doi.acm.org/10.1145/1013886.1007523
http://dl.acm.org/citation.cfm?id=829539.831969
http://dl.acm.org/citation.cfm?id=829539.831969
http://www.sciencedirect.com/science/article/pii/S1045926X05800126
http://www.sciencedirect.com/science/article/pii/S1045926X05800126
http://worrydream.com/#!2/LadderOfAbstraction/
http://worrydream.com/#!2/LadderOfAbstraction/
http://worrydream.com/#!/LearnableProgramming/
http://worrydream.com/#!/LearnableProgramming/
http://vimeo.com/36579366/
http://vimeo.com/36579366/

66

Bibliography

E. M. Wilcox, J. W. Atwood, M. M. Burnett,]J. J. Cadiz, and
C. R. Cook. Does continuous visual feedback aid debug-
ging in direct-manipulation programming systems? In
Proceedings of the ACM SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI "97, pages 258-265, New
York, NY, USA, 1997. ACM. ISBN 0-89791-802-9. doi:
10.1145/258549.258721. URL http://doi.acm.org/
10.1145/258549.258721.

http://doi.acm.org/10.1145/258549.258721
http://doi.acm.org/10.1145/258549.258721

67

Index

Base64 Encoding,
Code View,

Continuous Feedback, [6]

Debugging,
Detail View,
Feedback View,

Future Work,

Independent Frame Concept,
Inline Visualization, [f]

IPython Notebook,

jQuery,

Kurz Prototype - Architecture,
- Backend,

- Client-Server model,

- Intern Eval Function,

- Model-View-Controller,
- Sandbox,

- Source Map, [43]

Level of Abstraction,[9]

Light Table, 9]

Line-to-Line Relationship,
Live Coding,

Mental Model,
Message structure,
Model of Visualization Creation,

Order of Appearance,
Order of Execution,

Original Programming Cycle,

Paper prototype, 33|
Parallel Coordinates,

68

Index

Potential User Study,
Probing,

Qualitative User Study,
Quantitative Data,

Rehearse, [6H7]
- Backtracking, 6]

Scope, @
Swift Playgrounds,
- Assistant Editor,
- Sidebar,
- Source Editor Window,

Third Party Modules, {44{{45|

- AST, [

- Child_process,

- Contextify,

- Escodegen,

- Escope, [45]

- Esprima, @

- Estraverse, [45]

- HTMLTokenizer,

- Ws (WebSocket),
Three Column Layout,
Tracing, [7]

Type Dependent Visualizations,
- Grouping, 25
- Splitting,

Visual Programming Language, [f]
- VIVA, [g

Whyline,
YingYang,[7]

Typeset September 30, 2014

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Related work
	Prototype
	Motivation for our Enhanced Prototype
	Shortcomings of Kurz' Prototype

	Initial Design Ideas
	Three Columns Layout
	Each Variable in Its Own Frame
	Linking the Three Columns
	Grouping of Data Types and Their Detail Visualizations

	Preliminary User Study
	Setup and Tasks
	Results

	Final Design and Applied Changes
	Frame Design
	Detail Visualizations

	Implementation
	Existing Foundation for Our Prototype
	Newly Added Components
	Frame Management
	Frame Creation

	Visualization Management
	Data Type Dependent Visualization

	Discussion of our Prototype
	Capabilities and Advantages
	Limitations and Shortcomings

	Summary and Future Work
	Summary and Contributions
	Future Work

	Not Implemented Detail Visualizations before User Study With New Frame
	Bibliography
	Index

