RWTH

Reducing mental
context switches
during
programming
Supporting Code
Comprehension using
Semantic Links in

Software Development
Artefacts

Diploma Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

o1 0% Yea
0100 O
10007 ' GEE0
i1oir %

201 1€
ocol!

Henning Kiel

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Prof. Dr. Lichter

Registration date: Oct 21, 2008
Submission date: Jun 02, 2009

iii

I'hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbstandig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, June 2nd, 2009
Henning Kiel

Contents

[Acknowledgements|

| Conventions|

o1

Program Comprehension|.

o)

Software Testing|.

2.1 TestProcess

23

xiii

XV

xvii

xix

vi Contents

[2.3.3 Test-Driven Development in Practice] 15

[Example: RSpec|. 15

[Example: Liquid| 17

3__Related Workl 21
[3.1 Evaluating the Effectiveness of Test-Driven |

| Development| 21
[3.2 Tools for Program Comprehension| 24
B.2.1 OSoftware Reconnaissance| 24

[3.2.2 Automatic Generation of Suggestions |

tor Program Investigation| 25

3.2.3 Evolutionary Annotations| 26

324 Whyline 27

4 p 31
B1 Motivationl oL 31
4.2 Requirements| 33
4.2.1 Non-functional Requirements|. 33

4 Design| oL 34
4.3.1 Preprocessing| 36

432 DataFormati............... 37

4.3.3 Editor Integration|. 38

5__Evaluation| 43

Contents

vii

p.2.1 Task RSpec|.

[>.2.2 Task Liquid|

5.3.1 Quantitative|.

5.3.2 Qualitative].

6 Di onl

[6.1 User Study Discussion| . . .

[6.2 Requirements Discussion| .

(6.3 Summary|.

[7__Conclusion|

[7.2.1 Relevancy Measure| .

[7.2.2 Relevancy Calculation|

[7.2.3 Navigation|.

[7.2.4 Quality of Test Cases|

A Evaluation Maferials

B Bug Tickets|

59

61

69

viii Contents

| Bibliography| 73

[Index 77

ix

List of Figures

21 TDDworkflow] 13
3.1 Eclipse Plugin with generated suggestions| . 25
3.2 Evolutionary Annotations| 27
[3.3 Proposed questions by Whyline|. 28
3.4 The Whyline interface|] 29
4.1 High-level design of the prototype| 35
4.2 XML structure of the data formatl 38
.3 Architecture of the TextMate plugin| 40
@44 Plugininitialization|. 41
.5 Interactionsequence| 42
4.6 lest casesuggestions| 42
[p.1 Percentage of participants solving each subtask| 49
.2 Average task completion time| 50
.3 Average time spent inspecting test cases| . . . 51

List of Figures

[A.1 Instructions for user test participants| 62
[A.2 Instructions for the RSpectask] 63
[A.3 Instructions for the Liquid task| 64
[A.4 First questionnaire| 65
[A.5 Task questionnaire| 66
[A.6 Final questionnaire| 67
[B.1 Original RSpec bugreport| 70
[B.2 Original Liquid bug report|. 71

xi

Listings

2.1 Testcaseexamplel
[2.2 Simplest code to fultill the above test case| . .
2.3 RSpecexample|
[2.4 Different ways to set expectations in RSped| .
2.5 Asimple Liquid template]
.1 Minimal example of the RSpecbug|
0.2 RSpec code containing thebug|
.3 Minimal example of the Liquid bug|

54

Liquid code containing thebug|

14

14

16

xiii

Abstract

Test cases can be a key artifact for program comprehension. By identifying and
presenting test cases relevant to the source code currently worked on by the user,
program comprehension can be improved. Especially in test-driven development
this can be of great use as test cases already serve as low-level specification of the
implementation and are always kept up-to-date.

In the work presented here, a prototype was realized implementing above idea as
a plugin for a widely used text editor. The given prototype was evaluated in a
user study. While no impact on program comprehension was found, the plugin
improved navigation between source code and test cases.

xiv

Abstract

XV

Uberblick

Testfdlle konnen ein wichtiges Artefakt fiir Programmverstindnis darstellen.
Durch Identifizierung und Darstellung von zum aktuell bearbeiteten Programm-
code relevanten Testfédllen kann Programmverstandnis verbessert werden. Beson-
ders fiir Projekte, in denen Test-driven development angewendet wurde, kann dies
von grofsem Nutzen sein. In diesem Fall dienen Testfélle bereits als Spezifikation
der Implementierung und sind immer aktuell.

In der vorgestellten Arbeit wurde ein Prototyp entwickelt, der obige Idee als ein
Plugin fiir einen verbreiteten Texteditor realisiert. Dieser Prototyp wurde in einer
Benutzerstudie evaluiert. Es wurde keine signifikante Auswirkung auf Programm-
verstdandnis festgestellt. Das Plugin verbesserte jedoch die Navigation zwischen
Quellcode und Testfallen.

xvii

Acknowledgements

First, I would like to thank my parents Susanne and Henry Kiel for giving me the
opportunity to study Computer Science.

Thanks to Prof. Dr. Jan Borchers, Jonathan Diehl, and all the people at the Media
Computing Group for their support and the nice working environment.

Special thanks to Nan Mungard and Mathias Funk for their motivation and insis-
tence. This work would not have been possible without you!

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:

Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Source code and implementation symbols are written in
typewriter-style text. If not noted otherwise, all source code
is written in Ruby.

myClass

The whole thesis is written in American English.

Definition:
Excursus

Chapter 1

Introduction

Most programmers have to work with unfamiliar code.
Reasons for this include using third-party libraries, code
created by other team members, or even own code created
long ago. Especially during software maintenance, these
characteristics are commonly found. The passed time since
initial development in many cases means that the program-
ming team has changed and the original programmers are
not available anymore.

Determining the cause of a bug and creating a fix involves
many different and challenging activities. Presented with
a completely unknown program, the programmer first has
to comprehend the general architecture. She can then drill
down into specific parts of the program she deems as possi-
ble candidates for the location of the bug. She has to under-
stand how these parts interact with the rest of the program
to be able to pinpoint the unwanted behavior and also to
formulate a fix which does not corrupt existing behavior.

During these activities a programmer constantly switches
between different documents like external documenta-
tion (architecture diagrams, requirements specifications) or
source files and their corresponding test cases. Because the
investigated program is unknown, searching relevant doc-
uments is done by trial and error. This is not a very efficient
method for large software projects, making tool support for
this activity necessary.

Unfamiliar code is a
key obstacle for
programmers

Bug fixing in
unfamiliar code
involves many
different activities

Programmers
constantly switch
between different
documents

1 Introduction

Certain process
models ensure
availability of
up-to-date test cases

Test cases can act
as example code

The available development artifacts and their structure de-
pend on the underlying software process model. The soft-
ware process model also influences how the documents
are kept up-to-date during development and maintenance.
Test-driven development (TDD) is a programming model
in which code is only changed after corresponding test
cases have been written. By employing this model, one
makes sure that the test case artifacts are always up-to-date
with regard to the source code.

Such an existing test suite can improve program compre-
hension during the software maintenance phase. The pro-
grammer in above example can use test cases to better un-
derstand how parts of a program have to be initialized or
interact with each other. The test cases act as a kind of ex-
ample code for different parts of the program.

The approach presented in this thesis tries to facilitate the
use of test cases to improve program comprehension. This
is done by presenting the programmer a filtered list of test
cases relevant to the currently inspected source code. It was
assumed that search efforts would decrease and that rele-
vant information could be identified more easily.

In this thesis, I present above idea and explain how it can
be integrated into projects employing TDD. A working pro-
totype is implemented which integrates into a widely-used
text editor. This prototype is evaluated with a group of stu-
dent and professional developers. After discussing the re-
sults of this evaluation, possible ideas for further investiga-
tion and future work are outlined.

1.1 Structure

e In Chapter 2l—"{Theory|” the theoretical basis of this
thesis is explained. A definition for program compre-

hension is given and different measures are presented
how to assess the level of program comprehension.
Afterwards, the general concept of software testing
is explained. An introduction to test-driven develop-
ment is given and the main differences to software

1.1 Structure

testing are highlighted.
e In Chapter B—{Related Work]" I present existing

work in the fields of program comprehension and
test-driven development. Several studies are briefly
discussed which show that TDD is a valuable pro-
gramming model. Finally, different tool prototypes
to improve program comprehension are shown.

e In Chapter f—"Prototype]” the idea for a novel tool

to support program comprehension is presented. The
underlying idea is to provide the user with a list of ex-
isting test cases which are relevant to the currently in-
spected program part. After stating the requirements
for a prototype, I explain the prototype implementa-
tion.

e In Chapter [f—“Evaluation|’ a study to evaluate the

prototype is presented.

e In Chapter [—"Discussion|’ the results obtained in

the user test are discussed and put into context re-
garding the initial goals of the prototype.

e Finally, in Chapter [/]—“{Conclusion]” the obtained re-

sults are summarized and an overview of possible fu-
ture work is given.

Chapter 2

Theory

This chapter lays the theoretical basis for the work pre-
sented in this thesis. First, the concept of program compre-
hension is explained along with its importance for software
engineering tasks. Next, a general introduction to software
testing is given. Finally, the test-driven development (TDD)
programming model is explained and its differences to clas-
sical software testing highlighted. To document the prac-
tical relevance of TDD two Open Source projects employ-
ing TDD as their programming model are presented. These
projects are also used for the evaluation of the prototype.

2.1 Program Comprehension

There are many situations in which programmers have to
work with unfamiliar code, for example when working in a
team, integrating external libraries, or during maintenance.
A key challenge in all these cases is program comprehen-
sion. Especially during software maintenance it plays a
major role. According to |Arthur [1988] program compre-
hension can take up to 90% of the total time spent during
software maintenance. Several psychological models have
been proposed on how a programmer understands code
and many tools have been developed to support program
comprehension.

Program
comprehension is
critical during
maintenance

2 Theory

Definition of program
comprehension

Measurements of
program
comprehension

Psychological
models of program
comprehension

Definition:
SLOC

Common problems
for program
comprehension

Program_comprehension_is_defined in_Koenemann_and
Robertson| [1991]] as the process of understanding program
code unfamiliar to the programmer. Some reasons for the
challenge of program comprehension are given in Layzell
and Macaulay|[1990] as changing team members as well as
lack of documentation and communication in the team.

The level of program comprehension can be measured us-
ing different methods: In maintenance tasks participants
have to add features or fix bugs while the task completion
time is measured. Another possibility is to let participants
correctly fill in missing parts of the code and to evaluate the
correctness of their solution. A commonly used method for
small bodies of code is to ask participants to recall a chunk
of code memorized in an earlier stage and evaluating the
completeness. These and other program comprehension
measurements are described and evaluated in [Dunsmore
and Roper| [2000].

An overview of current research on code comprehension is
given by Von Mayrhauser and Vans [1995]. They identify
six different cognition models and categorize them accord-
ing to how they incorporate programmer knowledge, men-
tal representations and mental processes. They identify
several key obstacles for empirical validation, foremost that
most models have not been validated with experiments us-
ing large code bases. They criticize the small code bases
(less than 900 SLOC) used in experiments, since it is not
clear how they apply to real work situations. Finding expe-
rienced programmers willing to participate in such experi-
ments is another obstacle.

SLOC:

Source lines of code (SLOC) is a software metric to mea-
sure the size of a software program. In Conte et al. [1986]
a line of code is defined as any line of program text that
is not a comment or blank line, regardless of the number
of statements or fragments of statements on the line.

A qualitative study of code comprehension was conducted
by Sillito et al. [2006]. They observed professional program-
mers during maintenance tasks. The programmers were
instructed to think-aloud, i.e. to articulate their current

2.1 Program Comprehension

thoughts during the task. It was found that different pro-
grammers asked similar questions. These questions were
grouped in four categories:

¢ Finding initial focus points. These types of questions
are mainly asked by newcomers with mostly no exist-
ing knowledge about the program. The questions re-
volve around finding entry points into the subgraph
of related program elements related to a certain type
of functionality. Typical questions are “Where is the
code involved in the implementation of this feature”
or “Which type represents this domain concept”.

e Building on above focus points. After an initial focus
point has been found, using the type of questions in
this category, developers try to get a grasp of the pro-
gram elements related to the entry point. Common
questions involve the relationships between different
program elements like “Who implements this inter-
face” or “Where is this method called”.

e Understanding a subgraph. With questions from this
category, programmers try to get a better understand-
ing of how a certain subgraph of elements inside the
program works. The questions are about dynamic be-
havior, for example “Which execution path is taken in
this case” or “What is the correct way to use or access
this data structure?”.

e Questions about groups of subgraphs. The questions
in the last category are about the relationships be-
tween parts of the program. Typical questions are
“What is the difference between these similar parts
of the code” or “What will the total impact of this
change be”.

There are several ways to improve program comprehen-
sion during maintenance. As stated in [Sillito et al.| [2006]
frequent questions include the location of a certain feature
and how different parts of the program work together. Doc-
umentation created during the initial development can pro-
vide valuable information to resolve these questions. Use
Case and Class diagrams, for example, give a high-level

Where to begin

Finding related
program elements

Understanding a set
of related elements

Understanding how
parts of the program
work together

Project
documentation can
help with program
comprehension

2 Theory

Project
documentation is
often outdated

Program
comprehension
improves with tool
support

Definition of software
testing

Correctness cannot
be proved with test
cases

Selection of test
cases is a crucial
task

overview of the functionality of the program and its archi-
tecture. In|Ienny| [1988] it was shown that code comments
significantly improve readability and hence program com-
prehension.

In reality, though, documentation like UML-diagrams or
code comments are often not available during maintenance
or outdated. Code often evolves faster than its documenta-
tion. A programmer might change some code lines but not
update the corresponding code comments. Or the interface
of a class is changed without updating the Class diagrams
created in earlier development phases. Consequently effec-
tive use of such information during maintenance is hard.

Therefore other approaches incorporate tool support to im-
prove program comprehension. There exist several ideas
and prototypes in this area. In Section [3.2—"{Tools for Pro
lgram Comprehension|” I present ideas relevant to this the-
sis.

2.2 Software Testing

Software testing is an essential phase in every software de-
velopment process. In most software development pro-
cesses it happens after the implementation phase. The mo-
tivation for software testing is to raise the quality of the
software.

Myers| [1979] defines software testing as the process, in
which a program is executed with the goal to find errors.
A test case is successful if it has detected an error. If all
test cases pass, the probability is higher that the program is
correct according to the specification.

In general, software testing cannot prove the correctness of
a program, though. For most non-trivial programs the set
of possible inputs is so large that creating tests for all possi-
ble inputs is either impossible or too expensive.

Therefore the selection of appropriate test cases is such a
crucial and difficult task. There exist several methods for

2.2 Software Testing

creating test cases, for example selecting test inputs using
equivalence classes or finding additional test cases by ana-
lyzing the code coverage of existing test cases.

2.2.1 Test Process

Most formal testing is done in a way similar to the follow-
ing process model. In order to create a test case, the tester
first has to determine the expected output according to the
specification. Ideally the expected output is derived auto-
matically, for example from a formal specification. How-
ever, in most cases this has to be done manually by the
tester.

TEST CASE:

A test case contains a specification of test input and the
expected output. It is identified by a unique name. Test
cases concerning the same functionality aspect are usu-
ally organized in test suites.

The next step is to generate inputs which should result in
pre-defined output. This step also involves setting up the
test environment, to automate the test. The tester then runs
the test, compares the resulting output with the expected
output and creates the test protocol.

If the expected output does not match the generated out-
put, it still does not mean that an actual program error has
been found. One should first check if the expected output
is correct. If a real program error has been found, it will be
passed back to the development team to fix it.

2.2.2 Classification of Test Cases

Test cases can be classified in several dimensions. In the fol-
lowing, a selected set of criteria is presented. A more thor-
ough classification can be found in |Ludewig and Lichter
[2007]. One aspect is if the test cases are created as part of a
formal test process:

Definition:
Test case

Process to create
test cases

10

2 Theory

Information used to
create test cases

Scope of test cases

o Execution tests and throw-away-tests: These tests are

normally done by the programmer. Execution tests
just check if the program compiles and starts without
an error. Throw-away-tests also perform basic checks
if the generated output matches the expectation of the
tester. Both tests are neither documented nor created
according to a formal process.

Systematic tests: These tests are generally not created
by the developers themselves. As described above,
the test input and expected output is generated from
the requirement specification documents. The whole
test is documented, the results are logged and the test
is easily repeatable.

Another aspect is how they are created:

e Black-box test cases are created without any knowl-

edge of the actual implementation of the program. In
this case, the tester normally creates different tests to
cover all functionality and different input and output
classes, according to the specification.

White-box test cases. When creating white-box test
cases, the inner workings of the program are known.
Test cases are created until defined code coverage
goals are fulfilled, as explained in Section 2.2.3}—
“Code Coverage|’.

Test cases can also be differentiated using the scope of the
test case.

o A unit test case only tests a single part of the program.

Dependent parts are only simulated.

An integration test case focuses on the interaction of
several program components.

A system test case finally tests the entire program
against the specification. A special form are accep-
tance test cases which test if the program is in accor-
dance with the client expectations and the contractual
obligations of the developer are met.

2.3 Test-Driven Development

11

A special test form is the regression test. It is used to en-
sure that existing behavior is not corrupted in new releases
of the software. This type of test should ideally be com-
pletely automatic and integrated into the build process, so
that changes in behavior are detected at the earliest mo-
ment possible.

2.2.3 Code Coverage

Code coverage analysis is used to measure how much of a
program’s code is tested by a suite of white-box tests (see
Ludewig and Lichter| [2007]). There exist several different
types of code coverage. Common types are:

e Statement coverage is achieved when every statement
of the program has been executed once.

e Decision coverage is reached when at every branch de-
cision in the program every possible branch has been
executed once.

e Condition coverage is reached when every boolean
term in all branches has evaluated to both true and
false once.

In practice, not even the weakest code coverage type, state-
ment coverage, is always achieved. Ludewig and Lichter
[2007] give as possible reasons, that some code parts are
only used to check for errors in other parts of the program
or are dependent on circumstances which are difficult to
reproduce in tests. Project manager who want to define
a minimum level of coverage usually do so by defining
a percentage of statements, decisions or conditions which
should be covered by the test cases.

2.3 Test-Driven Development

Test-driven development (TDD) originated in the Test-first
practice of the Extreme Programming movement. Test-first

Regression tests to
not corrupt existing
behavior

Complete code
coverage is rarely
reached

TDDis a
programming model

12

2 Theory

Tests drive code
creation

Tests help during
refactoring

Tests act as a
low-level
specification

is a programming model where developers write test cases
and only afterwards start with the actual program imple-
mentation. Today TDD has developed into an independent
field as its usage is not necessarily dependent on other Ex-
treme Programming practices.

Contrary to the role of the test cases described in Section
2.2—“Software Testing’, the primary role of the test cases
in TDD is to specify what program part has to be imple-
mented or changed next. Kent Beck describes this in |[Beck
[2002] as follows:

We drive development with automated
tests, a style of development called test-driven
development (TDD). In test-driven develop-
ment, we

e Write new code only if an automated test
has failed

e Eliminate duplication

The continuously extended automated test suite deter-
mines the next program part to be developed, as described
in the first point. A new feature or requirement is speci-
fied with a set of new tests, which initially all fail. The pro-
grammer then writes code which ideally should not contain
more functionality than necessary to pass all tests.

The second point in Beck’s citation implies code refactor-
ing, which should be done when all tests pass. By contin-
uously testing, the programmer has more confidence that
the changes made to the implementation do not corrupt ex-
isting behavior.

TDD is an evolutionary development process with very
small iterations. During the repeated creation of tests and
code a programmer discovers new requirements for the
program, which are specified with failing tests, too. Thus,
one of the advantages of TDD according to Bhat and Na-
gappan [2006] is that the whole test suite represents a kind
of executable specification for the low level design of the
program.

2.3 Test-Driven Development

13

2.3.1 Process Model

The typical iterative workflow of TDD according to Beck
[2002] is shown in Figure This workflow is also referred
to as the “red-green cycle”. During the red part of the cycle
one or more test cases fail. Code is changed until all test
cases are passing and the green part of the cycle is entered.
While in the green part of the cycle, code is refactored to
remove duplication or to improve the design.

Quickly add
a test

Run all
Refactor to tests and
remove see the
duplication new one
fail
Run all Make a
tests and ‘ little
see them change to
all succeed the code

Figure 2.1: The iterative workflow of TDD as described in
Beck! [2002]

The first step in the TDD workflow is to write a failing test
case. The ideal test case should be small so that it clearly
defines what code to write next. The finished test case will
initially fail, as the relevant code has not been written yet.

The next step is to write the least amount of code to make
the test case pass. Beck notes that it can be surprising what
little code is needed to make a test case pass. Take for ex-
ample the simple test case in Listing This test case can

Initially a new test
always fails

Code is only written
to pass tests

14

2 Theory

Refactoring is only
done while all tests
pass

be passed with the naive implementation in Listing

def test_length_of new_list_should_be_zero
list = List.new
assert_equal 0, list.length

end

Listing 2.1: Test case example

class List
def length
return 0
end
end

Listing 2.2: Simplest code to fulfill the above test case

After doing the necessary changes to make the test suite
pass again, the next step is to reconsider the resulting im-
plementation and make changes, if necessary. During this
refactoring the existing test suite helps to make sure that
the behavior of the program element is the same.

The implementation of a list in Listing[2.2]is correct with re-
gard to the defined test case from Listing 2.1} but it is obvi-
ous that such a list is essentially useless. In order to create a
usable list implementation, more iterations of creating test
cases and writing the corresponding code would be done
until the required functionality is implemented.

This iterative creation of failing test cases and the code to
make them pass is essential to the TDD model. The auto-
mated test suite drives development and potential changes
in behavior during refactoring can be detected by the test
cases.

2.3.2 C(Classification

Using the classification of software tests presented in Sec-
tion[2.2.2—"|Classification of Test Cases|” the tests generated
during TDD can be categorized as follows:

2.3 Test-Driven Development

15

e Systematic. The test cases are created as part of the
TDD programming model. They are created by the
developers themselves, though, as they are an inte-
gral part of the implementation phase.

o A form of white-box test, although the relationship to
the implementation is reversed, meaning that the im-
plementation is based on the construction of the test.

e Unit tests, as they are designed to guide the imple-
mentation of a specific part of the program.

e Regression tests. When the implemented code is fin-
ished according to the related tests, these tests are
then used as regression tests, to make sure that later
refactoring does not corrupt existing behavior.

2.3.3 Test-Driven Development in Practice

Today TDD is used in many projects. |Williams et al.| [2003]]
and Bhat and Nagappan! [2006] describe their experiences
applying TDD in industry environments at IBM and Mi-
crosoft, respectively. Both studies are presented in more
detail in Section [3.1}—"{Evaluating the Effectiveness of Test
IDriven Development{”.

TDD is also employed in open source projects. In the fol-
lowing, two example open source projects using TDD are
presented. These examples are documented in detail as
they are used for the prototype evaluation in Chapter

Example: RSpec

RSpe(ﬂ is an Open Source library to support test-driven
development of Ruby programs by providing developers
with functionality to easily create and execute test cases. It
was created by Steven Baker in 2005. In the mean time, de-
velopment has been passed to David Chelimsky, Pat Mad-

'http:/ /rspec.info/

TDD is employed in
many projects

RSpec is a
framework for
creating TDD tests

16

2 Theory

Naming conventions
used in existing TDD
frameworks can lead
to confusion

RSpec’s naming
conventions better
convey the spirit of
TDD

doc, Aslak Hellesgy and other contributors. RSpec consists
of about 16.000 SLOC. About two thirds are used for tests.

RSpec was inspired by an article published by |Astels [2005]].
In this article Astels criticizes the common notion that TDD
represents some form of software testing to find errors as
explained in Section 2.2}—"Software Testing|’. In contrast
the primary goal of test cases in TDD is to specify behavior
of code. As a possible reason for this misconception Astels
mentions the common practice to use terms like test case,
test suite or prefixing test case methods with “test_”.

RSpec is a library which facilitates the use of TDD. It pro-
vides functionality to specify the behavior of code and to
define expectations, which the implementation has to ful-
fill. The main difference to other TDD frameworks is the
different naming convention. Instead of talking about tests
and test suites, RSpec uses names like behavior, examples
and expectations. Furthermore, RSpec tries to facilitate
code which resembles plain english sentences.

describe Bowling do
it "should score 0 for gutter game" do
bowling = Bowling.new
20.times { bowling.hit (0) }
bowling.score.should ==
end
end

Listing 2.3: RSpec example

The main elements of RSpec documents are shown in List-
ing A “describe” block is used to organize examples
related to the same functionality. Here it contains the de-
scription of the behavior for objects of the “Bowling” class.
An example of this behavior is defined by using the “it”
method. This method receives a string as a parameter de-
scribing the central expectation. This string is only used
when printing failed or passed examples. According to
the convention, the string should be constructed such that
it forms a readable, english-like sentence starting with the
word “it”. This sentence forms the human readable require-
ment for the program.

2.3 Test-Driven Development

17

The first line in the do-end-block prepares the object we
want to test. In the second line we put the object into the
state for which we want to set an expectation. Finally, in the
last line we construct the expectation. The example will fail
if this expectation is not met or if a runtime error occurs.

Most of RSpec’s functionality is implemented in such a way
that it more or less resembles an english sentence, so that its
semantic should be clear even to readers not familiar with
RSpec. In Listing some examples for this are given.

hash.should have_key ("some key")
variable.should not be nil
lambda {
object.method_call
} .should change (object, :value) .by(2)

Listing 2.4: Different ways to set expectations in RSpec

Today RSpec is one of the most used frameworks for TDD
in the Ruby world. Some examples are:

o MerbE] , a framework for creating web applications.

e The rubyspec projeciﬂ , which aims to create an exe-
cutable specification of the Ruby language.

° Mephist(ﬂ, a web application to create blogs.

Example: Liquid

LiquidE] was created by jadedPixel Inc. in 2006 and pub-
lished under an Open Source license. It is a library to em-
ploy templates in a web application without compromising
the safety of the server. Liquid has about 3.500 SLOC, of
which two thirds are used for tests.

*http:/ /merbivore.com/

*http:/ /rubyspec.org/

*http:/ /mephistoblog.com /
5h’c’cp:/ /www.liquidmarkup.org/

RSpec code
resembles english
sentences

Liquid provides
security and
user-generated
design

18

2 Theory

Using Liquid a clearly
defined public API is
exposed

Liquid was created out of the necessity to allow users of
web application to create and edit templates by themselves.
An example is the creation of a new design for a blog or web
shop. Such a template normally consist of mostly HTML,
with some instructions in the templating language. When
a webpage is opened, these instructions are executed to fill
in the HTML code for the dynamic parts of the page.

As arbitrary users of such a web application should be able
to edit these templates, the templating engine must pro-
vide a clearly defined interface to the host application, but
should disallow any access to APIs reserved for internal
use.

To allow for this isolated interpretation of templates, Lig-
uid defines a simple programming language which is in-
terpreted when loading a template. Liquid also offers an
interface so that developers of web application can easily
define the API for their application.

The example template in Listing[2.5]is used to generate a list
of products in HTML. The variable products is assigned
by the host application. Using a simple for-loop, the tem-
plate outputs the name and description for each product.
If a product contains a link to an image, the template will
create an image tag as well.

{% for product in products %}
<hl>{{ product.name }}</hl>
<p>{{ product.description }}</p>
{% if product.image %}

{% endif %}

{% endfor %}

Listing 2.5: A simple Liquid template

products
1
name = "Bike"
description = "long text"
image = "/bike.jpg"

2.3 Test-Driven Development

19

name = "Car"
description = "longer text"
image = NULL

Given the Liquid template in Listing[2.5/and above variable
assignment, one can render the template which would re-
sult in the following HTML snippet:

<h1>Bike</hl>

<p>long text</p>

<hl>Car</hl>

<p>longer text</p>

Liquid’s programming language consists of two main com-
ponents:

e Commands included in {% and %}. These commands
are used for flow control, assignment or inclusion of
other files, but produce no visible output in the result-
ing rendered output.

e Commands included in {{ and }}. During rendering
these commands are replaced with their value accord-
ing to the current variable assignment.

Liquid is currently used in several web applications. Some
examples are:

o Shopifyﬂ , a fully hosted eCommerce solution.
o Mephisto[z], a web application to create blogs.

° 3seller§§] , a CMS and eCommerce solution.

Shttp:/ /www.shopify.com/
"http:/ /mephistoblog.com/
8h’c’cp:/ /www.3sellers.com/

21

Chapter 3

Related Work

In the following, selected studies about the effectiveness of
test-driven development are presented. Most studies find
a decreased defect rate when employing TDD in a soft-
ware project. Furthermore, different existing approaches
to improve program comprehension with tool support are
shown.

3.1 Evaluating the Effectiveness of Test-
Driven Development

There is previous research on the effectiveness of TDD with
both students and professional programmers. Most stud-
ies found a smaller defect rate compared to programming
models in which no tests are required, though in many
cases an initially lower productivity was found.

Muller and Hagner|[2002] conducted one of the first exper-
imental studies about the effectiveness of TDD. Students
were divided into two groups. One group developed ac-
cording to the TDD model, the control group according to
the classic programming model. All participants had to de-
velop the main class for a graph library. They were given
method declarations and had to implement the respective
method body. The experiment consisted of two phases. In
the first phase, the participants were allowed to work freely,

TDD lowers defect
rates

Comparing TDD with
classical
development

22

3 Related Work

TDD experiences in
the industry

TDD significantly
lowers defect rate

until they considered their implementation to be correct. In
the second phase, both groups had to fix bugs in their code
from the first phase discovered by a suite of acceptance test
cases. These acceptance tests had been developed a priori
by the experimenters. The participants did not know about
the second phase beforehand.

Dependent variables were the total time for finishing both
phases, the amount of bugs discovered in the second phase,
and the amount of wrong calls to existing methods. A call
to an existing method in the graph library was considered
wrong when it caused compilation or runtime errors. The
environment with which the participants worked was in-
strumented to log these types of errors. The participants
were not instructed about this logging. The wrong calls
were divided into calls which were only used wrongly once
(a) and calls which were repeatedly wrong (b). The lat-
ter two variables were used to judge the level of program
comprehension. The authors argue that participants which
better comprehend the existing code of the graph library
would make fewer mistakes reusing existing code, hence
committing fewer repeated errors.

A statistically significant difference between the two
groups in the variable b was discovered. While both groups
had a similar number for a, the TDD group had a signifi-
cantly lower number of repeated wrong calls. The authors
argue that a possible reason for above difference is, that,
through repeated testing, the participants learned more
quickly about the existing interfaces in the graph library,
and thus introduced less repeated errors.

Williams et al| [2003] present one of the first TDD study
with professional programmers. An IBM division devel-
oping device drivers for various platforms had to release a
new version. All earlier releases were developed using “ad-
hoc unit testing”, that is each programmer developed a set
of unit tests after having written code. Most of these unit
tests were not even automated. For the new version, man-
agement introduced the TDD programming model. After-
wards, they compared the defect rates (measured in defects
per SLOC) of new release and old release.

They discovered that the version developed with TDD

3.1 Evaluating the Effectiveness of Test-Driven Development

23

had a 40% lower defect rate. The authors also noted that
changes in requirements in the middle of the project did
not have a big impact. As the authors highlight, this was no
formal experiment, but a case study. However, this shows
that TDD can have significant advantages in an industrial
environment.

George and Williams [2003] present an experiment with
professional Java programmers within three different com-
panies. The programmers were divided into two groups.
One group used the TDD programming model. The other
used the classic waterfall model with tests, which were cre-
ated after the programming phase. The assignment was to
develop a bowling program according to a given set of re-
quirements. There was no time limit for task completion.
When the participants regarded their program correct, the
experimenter measured the defect rate according to a set of
previously created black-box tests.

Dependent variables were the time to finish the program,
the number of successful black-box tests and qualitative
feedback from the participants about TDD as a program-
ming model. Furthermore, the quality of the tests created
by the TDD group was measured using a code coverage
tool. The tests were rated as having a higher quality if they
covered more of the actual source code of the program.

It was shown that the programs created by the TDD groups
had an 18% lower defect rate, as measured by the number
of passed black-box tests. This difference is statistically sig-
nificant. The authors take this as a confirmation of the hy-
pothesis that TDD usage results in higher code quality. The
measured code coverage of the test cases in the TDD group
was very high, surpassing even the industry average.

At the same time, the TDD group needed 16% more time to
finish the program. This correlates with the higher quality
noted above. While the authors admit that a longer com-
pletion time might be a reason for the higher quality, they
emphasize that each group was free to hand the program
to the experimenter whenever they felt it was finished. The
control group was free to use more time in order to create
a program with a lower defect rate. The authors argue that
the TDD group seemed to have a better understanding of

Test first vs. test last

TDD conveys better
sense of correctness
of a program

24

3 Related Work

Finding answers to
“Where to
begin”-questions

the current correctness of their program.

3.2 Tools for Program Comprehension

As discussed in Section 2.1—"/Program Comprehension|’,
program comprehension is a key obstacle in large projects
and especially in maintenance tasks. Several existing soft-
ware tools address this issue. In the following, a selection of
different approaches is presented which focus on improv-
ing program comprehension during maintenance.

3.2.1 Software Reconnaissance

Wilde and Scully| [1995] present a technique called “Soft-
ware Reconnaissance”. Its goal is to help locating the im-
plementation of a particular feature in the source code.

The underlying idea is that a programmer prepares several
test cases and some of these test cases use the feature in
question, some explicitly do not. These test cases are then
run by a code coverage tool, which tracks the code paths
used by each test case.

If a is the set of code paths for test cases using the feature,
and b the code paths for test cases not using the feature,
the tool subtracts b from a, resulting in a set of paths which
likely belong directly to the feature. The tool presents these
code paths next to a list of functions and files used.

Wilde and Casey|[1996] document the experience of using
the Software Reconnaissance tool in a number of different
programs. In most cases, the number of files suggested by
the tool for further inspection was about one sixth the total
number of files in the project.

3.2 Tools for Program Comprehension

25

3.2.2 Automatic Generation of Suggestions for Pro-
gram Investigation

Robillard| [2005] presents an algorithm which, given some
program elements like methods or variables, can be used to
find other related elements. The goal is to improve under-
standing of the possible impact of code changes. The user
interface of an Eclipse plugin implementing this algorithm
can be seen in Figure

© Suggestion View &3 HE & 8 =0
- E Storage Format Management
=-{& DrawApplication
o fStorageFormatManager
@ getStorageFormatManager()
o =etStorageFormatvanager (StorageFormatManager)
- 'ﬁ' StorageFormat
@ geifFileFilter()
2 @ StorageFormatManager
@ StorageFormatManager()

4 - =

Figure 3.1: Eclipse Plugin with automatically generated
suggestions for program investigation

The programmer has to start by defining a set of program
elements she is interested in. Using static code analysis, the
algorithm finds other elements which are in some relation
to the initially specified elements. These relations can be
the use of a variable or a method call, for example. To or-
der related elements, the algorithm calculates a measure of
relevancy using the following two criteria:

e Specificity: An element y is relevant in respect to a set
of elements I, if every element in I which is related
to y is only related to few other elements outside of I,
and if y is only related to few other elements.

e Reinforcement: An element y is relevant with respect
to a set I, if most other elements related to y are also
in [.

Finding a set of
related program
elements

26

3 Related Work

Information about
why a piece of code
developed into its
current state

Heuristics to relate
different information
sources

The authors evaluated the quality of the algorithm’s re-
sults in a study. They selected a function inside an Open
Source program and presented the suggestions to two stu-
dents which had a good knowledge of the used program.
The students had to judge each suggestion if it helped in
comprehending the function or not.

Only 26% of the algorithm’s suggestions were judged as
being not relevant by the experts. This number was even
lower when only considering the suggestions rated most
relevant by the algorithm.

3.2.3 Evolutionary Annotations

German et al.| [2006] present Evolutionary Annotations,
which are contextual information computed from artifacts
created during most software projects. Contrary to doc-
umentation or code comments, Evolutionary Annotations
help to understand the evolution of code over time. Espe-
cially during maintenance, they can be used to determine
why certain code parts have been developed the way they
exist in the released version.

Evolutionary Annotations are generated from artifacts like
bug reports, commit messages, TODO comments in the
code or messages on mailing lists.

The authors suggest different heuristics to relate such arti-
facts to a code line or file. For example, when discussing a
patch for an Open Source project on a mailing list, many de-
velopers include a listing of changes in question. By search-
ing in the code for the given changes, one can relate such
discussions to code location.

A problem is still how to weight the different annotations.
Some form of weighting has to be done, as for example a
central file in a project will accumulate many commit mes-
sages over time. Depending on the maintenance work to
be done, only a subset of those commit messages might be
relevant.

3.2 Tools for Program Comprehension

27

=23 [~ a8 - @]85 0- Q- | @ |- G- 0- [& & o b W
B c/Cr+ Projects 56~ Navigator| = O[T buff.c | (£ Makefile.tmpl (B 9COMpare NEBICOIeIC SWOTRe paces anaVersIone s, =0
= & 7 ||| structure Compare
> Egap 5] Text Compare [l & @
» yhelpers
2 gmcﬁm Works pace file: http_core.c [Repository file: http_core.c
> é&\lh o) * But then again - you should use AuthDigestRealmSeed in your c * But then again - you should use AuthDigestRealmSeed in yol| [
* file if you care. So the adhoc value should do * file if you care. So the adhoc value should do
% W g Y 0-
[Makefile.tmpl 106443 11 return ap_psprintf(r->pool, "¥pI¥ppXpp¥pp¥pp”, return ap_psprintf(r->pool , "%pp¥ppkppRppkpp",
[NWGNUmakefile 106443 &r->connection->local_addr. sin_addr, (void *J&((r->connection->local_addr).sin_addr 3,

[5) NWGNUmakefile.mak 329/
[@ alloc.c 106443 11/24/04
[buff.c 106443 11/24/04)

[} gen_uri_delims.c 106443
|5 gen_uri_delims.dep 10644

[& hup_log.c 106443 11/24
[@ http_main.c 160164 4/5,
[http_protocol.c 230826 8

[6 rfc1413.c 106443 11724

[€) util.c 356278 12/12/05

[@ util_date.c 106443 11/2¢

[¢ util_mdS.c 106443 11/2

[util_seript.c 106443 11/2

(& util_uri.c 106443 11/24/
(= modules

Cvoid *)ap_user_name,
(void *)ap_listeners,
(void *)ap_server_argvd,
Cvoid *)ap_pid_fname);

(void *Jap_user_name,
(void *Jap_listeners,
(void *Jap_server_argv8,
Cvoid *)ap_pid_fname);

[} gen_test_char.c 106443 1 }

Eigen_testchar.dep 10644 APT_EXPORTCconst char *) ap_default_typeCrequest_rec *r) APT_EXPORTCconst char *) ap_default_type(request_rec *r) Py
£ gen_test_char.dsp 106443l || ; f i
=i gen_test_char.mak 10644/ € i) I €« R

Problems| Console| Properties | Progress [SVN Resource History| Search [® Evolutionary Annotations 3

email (code revier global

|53 gen_uri_delims.dsp 10644%) Type Scope TimeStamp Author Version Other

4 gen_uri_delims.mak 1064, email global 2004-11-2115: jorton 103824 siill some reg exp problems
[} htp_config.c 106443 11, svn commit log global 2004-11-20 03: nd 103824

[# http_core.c 105350 9/30 bug 28218 local 2004-11-17 04 Kevin) walters <| 103824

2004-11-18 10 Jeff Trawick, Joe (103824 Votes +1, +1

Fix a bunch of cases where the return code of the regex «
errors in regular expressions for LocationMatch cause sile |4

3 < e problem turned out to be the [|. I had a quick glance throu e code an
6 http_request.c 88479 3/¢ || The problem turned out to be th I had a quick gl through the code and
= it reads like the regular expression library doesn’'t like this and regards it
[hrep_vhost.c 106443 11/ as an error (i note solaris egrep errors, perl thinks its ok). The problem is

that this error is not reported to the user so the configuration appears to be
ok when the process is started. I think this is both confused to the naive
configuration creator and potentially dangerous if the Location block comtains
some critical (say, security-related) directives.

It looks like the (handful of) ap_pregcomp calls in http core.c do not check
for a NULL return code that would indicate a failed compilation. So this
affects Location -, LocationMatch, Directory -, DirectoryMatch, Files -,

’ FilesMatch.

> Egos

P Gregex Perhaps this problem exists in apache 2.0 as well? And maybe other areas of
b (support +||| apache 1.3 (not mod_alias, just had a look there!).

b _Catest v

Figure 3.2: List of Evolutionary Annotations for selected code

3.24 Whyline

Ko and Myers [2008] present an approach to find the lo-
cation of errors in Java programs called the Java Why-
line. This debugging environment allows developers to ask
questions about the output of the program. Whyline then
searches through data generated during program execution
to identify locations in the execution trace which resulted in
the specific output.

Whyline works by instrumenting a Java program so it can
trace its execution. The developer runs the program and
executes the sequence of events leading to the error. In the
background, Whyline continuously records the output, in-
put events and the executed code.

After quitting the program, the actual Whyline interface is
started. The developer can scroll through a timeline of pro-
gram execution to reach the point where the unexpected
behavior occurred. She then can select elements of the pro-
gram’s output and select possible questions suggested by

Determining how
program output was
created

3 Related Work

' /

properties ofthis line ¥ whydidx1=777

objects rendering this ¥ why did y1 =2747

why did x2 =757

windows ¥ why did y2 = 2557

why did color =JJ? A
why did font = Dialog 12 pt?

why did stroke = 5.0 pixel stroke?

Figure 3.3: Proposed questions by Whyline for the canvas
of a drawing program

Whyline, as seen in Figure Whyline’s capability to
generate these questions depends on knowledge about the
user interface types used. All basic Java output types like
strings, graphic primitives or GUI widgets are currently
supported.

The program displays information about the question with
the user interface seen in Figure It shows the timeline
of events leading to the selected output in the bottom mid-
dle of the window. When selecting one of these events the
corresponding source code is displayed above. Developers
can also ask follow-up questions proposed by the tool.

In Ko and Myers| [2009] the authors evaluate the Whyline
debugging tool by comparing it to classic debugging done
with breakpoints. Each evaluation group consisted of ten
students. All participants had to solve an existing bug
ticket of the Open Source Java program ArgoUML. The par-
ticipants had to find the cause of the bug and propose a
change.

The results show that the group using the Whyline tool
had both a statistically higher success rate in finding and
fixing the error as well as a statistically lower completion
time. For the first task, the files viewed by the participants
were also on average more relevant to the bug in question
then for the control group. This indicates that the tool helps
in quickly finding the correct place to correct an inspected
bug.

29

3.2 Tools for Program Comprehension

mdno wrerdoid mnoqe suonsanb Surromsue 105 sdeFIAIUT SUIAYAA F°€ 2InT1]

aAgasno|ssasold | uauodwon +
(Ipaseajayasnow : JaualsIPoel] +

()Bunsnipysianiealas - Japlsr +
as : japojyabueypapunogynelag +
: |apoyabueypapunogynejag +
apoysbBueypapunogynelsg +
abueya)els | Jsusis|epop +
()pebueyeieigady : Jeplsr +

+

T4 B4 LSMODUINIUIE = SIUY +
(JpebueyDalels : | $mopuppUIEd —
S-0BNBNDIUBAI LMY —

Lyzem spealy)

suopdeaxa jxa)

LB S-gananpiuead LY
0100

(1ganpoud) g0 wmal (Janeeb pp Aym
(193npoud) £ wmal (Jane/e6 pip Aym
(12anpoud) £0 wimal {Janeaisd P Aum

£8IN2a%a S pIp Aum ()

t()FuTDdad

H H((()IATBATIL TPTISD
TPIISE

9o

uby3)pabubyyainis pioa d1ignd

Bupy)a0102 dauszsiiabuoy) ajoatad

g0 Jo3anajsuo)ioalqgiuieg ajparad

“alqis

d Jo UE)S

P] (D P Py B eV

ifl= 40102 pip fum

ifl= 40100 pip

R 3| sy

apoad yaJeas H

——

Guims xerel +
JuBASIME BAB] +

(nued

() aueisieh
{xueisieh
{)Apuzieb
()xpuzieb
(Jxogbu;

(J1gmopuipyuied

SSB|"L$MOPUIMIUIR —

EAR[MOPUNUIE] —
sisIHopNsuoDPslqoluled +
erellopnisuonpslqoiuled +

enel1oalqoiuied +
englseausDluled +
eneliulediasess +
ene[SUoaY +
ued oy nwanps —

(aBexyoed yne@p) +

erefjulediouad —
SSE|MOPUIAYUIEd +

SSE|IE$MOPUIMIE] +

SSB|I"Z§MOPUIMIUIRd +

e erel +

83Inos

31

Chapter 4

Prototype

4.1 Motivation

Software maintenance is still one of the most important
phases in a software’s life cycle, and program compre-
hension, as explained in Section 2.1—"Program Compre-]
" a key aspect. Program comprehension is often
hindered by missing or badly maintained documentation.
Documentation can exist in the form of external documen-
tation like requirements specifications, API documentation,
or architecture diagrams. Code comments can also be
useful to understand specific parts of the code. As code
evolves, both types of documentation are often left behind
and not kept up to date.

A project employing TDD as its development practice cre-
ates a big set of test cases. These test cases are automatically
kept up-to-date, as one of the key factors in TDD is that any
code change must not let test cases fail. As explained in Sec-
tion 2.3 —"{Test-Driven Development’, the test suite can be
regarded as a form of executable specification.

Because the test cases are artifacts which are always kept
up-to-date, they are an interesting candidate for use during
software maintenance. For instance, they are already used
in the Software Reconnaissance work by |Wilde and Scully’
[1995] to locate the implementation of certain features. An-

Program
comprehension
hindered by badly
maintained
documentation

Test cases are
always up-to-date

Test cases are
already used in
software
maintenance tools

32

4 Prototype

Test cases as
documentation

Finding relevant test
cases can be
time-consuming

Differences between
test and source file
organization

Test cases are no
substitute for
program
comprehension

other example are the results of the user study performed
in Muller and Hagner|[2002]], where the authors argue that
continuous testing raises program comprehension of exist-
ing code as developers get more exposure of the existing
code while writing new test cases.

I think that even existing test cases can serve as a form of
example code showing how to use different parts of a pro-
gram. In each test case the object to be tested has to be
instantiated, its connections to other relevant objects are set
up, and some methods are executed. As the source code
development is driven by those test cases, the actual usage
of the objects or classes in the project is reflected.

Since test cases are usually maintained in different files than
the actual code, direct navigation between the code and the
relevant test cases is often not possible. Some projects use
a similar directory structure and filenames for the source
code tree and the test case tree as a policy.

But this does not work in every case. A programmer might
decide to split the test case file for a given class into several
files according to different functional aspects of the class.
Or a class might be used in different contexts, and a pro-
grammer creates test cases for each context in different files.

Another problem which arises is that a single file can con-
tain too many test cases. If a programmer is only interested
in a certain functionality subset of a class or part of a pro-
gram, it can be hard to find the relevant test cases.

I propose a new method to ease the navigation between the
source code and the related test cases, and the discovery of
relevant test cases. The underlying idea is to only show the
test cases which use a given method during their execution
and order them according to a relevancy measure.

A typical use case could be, that a programmer has already
identified the class where the source of a bug is located.
But as she is unfamiliar with the usage of said class it is
not clear to her how to fix the bug. By changing the class
she could corrupt other parts of the program depending on
this class. The existing test suite can detect some unwanted
side-effects. But to have a good understanding of how the

4.2 Requirements

33

class is used is still very important in order to create a fix
which integrates well into the program.

To get a better feeling for how the class might interact with
the rest of the program, the programmer can consult the list
of relevant test cases which show how the class has to be
instantiated and what other parts of the program it might
affect.

4.2 Requirements

Based on the motivation for the tool, I defined several ini-
tial requirements and use cases for the tool which will be
presented in the following.

Given a method in a source file, the tool shows all test
cases which use this method during their execution. The
test cases are shown ranked by relevance. Initially, the rele-
vance will be a simple count of how often a test case has (di-
rectly or indirectly) called the method. This is determined

by the statement coverage (see Section 2.2.3"Code Cov-
lerage]’) for each test case.

The tool is integrated into an existing editor, as it comple-
ments the functionality used for editing code. The list of
relevant test cases is updated automatically while the pro-
grammer navigates through the source code.

The tool offers the possibility to easily switch between the
source code and any relevant test case by double-clicking
on one of the test case suggestions.

4.2.1 Non-functional Requirements

For the initial prototype the only important point is that the
normal workflow of the programmer is not to be hindered
by the tool. Performance is of lesser relevance.

The calculation of the code coverage for each test case is a

Test case
suggestions are
shown for the
selected method

Integration in existing
editor

34

4 Prototype

Adaptable to different
programming
languages

Prototype works only
with Ruby

Test suggestions are
calculated offline

very expensive operation. Since the goal of the prototype
is to validate the basic idea, in the initial implementation
the tool will not immediately update its suggestions for rel-
evant code changes when the source code or the test cases
are changed. It is expected that this will not be a problem
when using the prototype in the evaluation, as participants
will spend most of their time navigating the existing source
code without modifying it.

The tool is adaptable to different programming languages.
As long as it is possible to calculate the statement coverage
(see Section2.2.3—"{Code Coverage!”) for a given language,
it should be possible to use the tool.

4.3 Design

As the tool needs to know the syntax of the used program-
ming language, the functionality to parse a source file is
realized as an exchangeable module. The tool requires two
things from given source code: The names and line num-
bers of every test case in a file, and, given a line number,
the corresponding method.

For simplicity, I do not use a full parser, but regular expres-
sions to find the definitions of test cases and methods. This
has proven to be sufficient for a prototype. It also simpli-
fies adapting the tool to different programming languages,
since changing regular expressions is less work then imple-
menting a complete parser.

While the tool can be used for different languages, I
only implemented the functionality to process Ruby source
code. One reason for this is that TDD is a common practice
in the Ruby development community, so it is easy to find
Open Source projects with large test suites and good code
coverage. Another reason is that with RCOVEI an easy code
coverage tool for Ruby exists.

Calculating code coverage is an expensive operation. I
therefore divided the tool into two parts: First, a small

]htt’p: / /eigenclass.org/hiki/rcov

4.3 Design

35

Source

Test Cases Code

Pre-
processing

Tool

Coverage

information I Edltqr
for test Plugin
cases

Figure 4.1: High-level design of the prototype

command-line program that generates an XML file con-
taining the list of relevant test cases for each method in
the project. Second, the actual editor plugin, which dis-
plays the relevant test cases to the user while navigating
the project’s source files.

I chose to develop a plugin for the TextMateE] editor, a
widely used editor in the Ruby world. TextMate is a text
editor running on the Mac OS X operating system. It is de-

*http:/ /macromates.com/

36 4 Prototype

veloped in Objective C and although it does not have an
official plugin interface, it is easily extendable due to the
dynamic nature of Objective C.

The source code for the preprocessing tool and the editor
plugin can be downloaded on the chair’s wikiE|.

4.3.1 Preprocessing

Before one can use the editor plugin prototype in a software
project, one has to generate the code coverage data for the
test cases in the project. The command-line program lever-
ages existing code coverages tools, as it is nontrivial to cal-
culate code coverage.

The command-line program consists of several processing

stages:
A list of all methods 1. First the program creates a list of all existing meth-
is created ods in all source files. The directory where the source

files are located is supplied as a command line argu-
ment. To keep the prototype simple, this is currently
done with a simple regular expression, which checks
each line if it contains the Ruby keyword def to de-
clare a method followed by whitespace and a name.
If a method definition is found, a new method entry
is created and saved with the range of lines until the
next method definition. One obvious disadvantage
of this solution is that it regards the white space in
between method definitions as belonging to the first
method. It has proven sufficient for the evaluation,

though.
A list of all test cases 2. Next, the program creates a list of all test cases. The
is created directory where the test cases are located is supplied

as a command line argument. Similar to the method
detection above, a regular expression is used to detect
the definitions of test cases. For each test case the fol-
lowing information is saved: The containing file, the
name of the test case, and the line of definition. This

3 http:/ /hci.rwth-aachen.de/tiki-download _wiki_attachment.php?attld=765

http://hci.rwth-aachen.de/tiki-download_wiki_attachment.php?attId=765&download=y

4.3 Design

37

information is used in the following stage to execute
only a single test case and not the whole file or suite.

3. Afterwards, the program executes each of the above
test cases. Most TDD frameworks provide a so called
“test runner” which is used to execute the whole test
suite or individual tests. The test runner is invoked
inside the code coverage tool. Each test case is exe-
cuted individually to be able to relate method invoca-
tions to a single test case. The code coverage tool is
configured such that it calculates the number of times
each source line been executed. This stage is the main
reason that the preprocessing can take hours, depend-
ing on the speed of the code coverage tool, the num-
ber of test cases and the speed of test case execution.

4. In the next preprocessing stage the program analyzes
the output of the code coverage tool. In this output,
the coverage tool returns a listing of each source file
and indicates for each line the number of times it was
executed. Since we created the list of all methods in
the first step, saving the execution amount for each
method is easy now.

5. Finally, the data is saved into an XML file which later
can be accessed by the editor plugin.

TEST RUNNER:

A test runner is a tool used to execute a collection of test
cases or test suites. In general it is provided by the used
testing framework. Most test runners offer the possibility
to execute only a single test case identified by its name or
by the filename and line number of its definition.

4.3.2 Data Format

The data format used for the file created by the preprocess-
ing tool is designed according to the requirements of the
editor plugin. Because the plugin is written in Objective
C using the standard Mac OS X frameworks, the data file

Coverage for each
test case is
calculated

Coverage data is
analyzed and saved
for each method

Definition:
Test runner

38

4 Prototype

Dictionary
Dictionary Dictionary test cases
" doen L " H relevancy
source files methods > line nr
file_name method_name test:file
test_name

metadata

base_dir
source_dir
test_dir

Figure 4.2: XML structure of the data format

should be easily readable in this environment. Addition-
ally, it should be easy to get the list of relevant test cases
given a source file and method name.

The data file format is XML and its structure is shown in
Figure At the top level it contains two entries, one con-
taining the actual coverage data, the other entry containing
metadata, such as relative paths to the source and test di-
rectories.

The actual data is listed by source file name. For each
source file, every contained method is listed. For every
method, a list of relevant test cases and their relevancy for
the method is saved.

4.3.3 Editor Integration

The TextMate editor is very configurable through the use of
bundles. A bundle can, for instance, define new language
syntax highlighting, code completion triggers or keyboard
shortcuts. But reacting automatically to the user moving
through source code is not supported.

4.3 Design

39

TextMate also has the possibility to use plugins which offer
enhanced functionality not possible to implement with a
bundle. However the only official API TextMate offers to
plugins is a single method to load the plugin’s main class.
No public API exist for plugins to integrate with TextMate.

Due to the dynamic nature of the Objective C runtime it is
possible, though, to hook into existing, internal methods of
TextMate. Using a tool called classdumpﬁ one can generate
the class declarations for any given Objective C program.
One can then search these class declarations for possible
entry points to integrate the plugin using techniques like
“method swizzling” or “class posing”.

METHOD SWIZZLING:
Method Swizzling is a technique to override
a method during runtime without subclass-

ing. The Objective C runtime allows to change
the implementation of a method wusing the
method exchangeImplementations function.

This exchanges the code being executed when being
send one of the two messages. This can be useful if one
wants to add functionality to a method in a class in such
a way, that the new functionality is used whenever said
class is used. Subclassing would not work in this case,
as other program parts would need to instantiate from
the new subclass.

CLASS POSING:

Using Class Posing, a subclass can take the place of one
of its superclasses. Every class in Objective C has a
method called poseAsClass: which takes as an argu-
ment the class to pose as. After calling this method, ev-
ery message sent to the superclass will be received by the
subclass. Consequently instantiating new objects from
the superclass will create objects from the posing sub-
class instead.

The plugin needs to be informed about file changes and
cursor movement to update the list of relevant test cases.
It then displays this list in a table shown in a new window.

*http:/ /www.codethecode.com/projects/class-dump/

Editor plugin uses
private APls

Definition:
Method Swizzling

Definition:
Class Posing

40

4 Prototype

When the user double-clicks on one of this test cases, the
plugin lets TextMate open the test definition. The resulting
interface can be seen in Figure

TestSuggestionsPlugin
initWithPlugInController
1

L
RelevantTestcasesControl

ler —>| NSWindowController
initWithPlugInController

] {

. RelevantTestcases
NSTableView setLineNumber

setSourceFilePath
setDataFileTo
relevantTestCases

Figure 4.3: Architecture of the TextMate plugin

The main class of the plugin is called
TestSuggestionsPlugin. After loading the plu-
gin code, TextMate initializes this class by calling its
initWithPlugInController: method. In this method,
the plugin creates the menu entries to display the sugges-
tion window and to load one of the data files generated
by the tool described in Section #.3.1—"Preprocessing”.
It also hooks into existing classes of TextMate to receive
the current file and row index when the user navigates
through the source.

TextMate displays the current row index in a status bar at
the bottom of each window. Using the Method Swizzling
technique I exchanged this method with a newly created
method which gets called every time TextMate updates the
current row index in its status bar. The new row index
is saved and then the old implementation called so Text-
Mate’s behavior does not change.

In order to let the plugin react to file changes I made use
of the Class Posing technique. The window class in the Co-
coa framework holds a reference to the name of the current

4.3 Design

41

file it displays. I created a subclass which overrides the
setRepresentedFilename method, saves the new file-
name, and then calls the same method on the super class,
to make the process transparent to TextMate. By letting this
subclass pose as the window superclass, every new win-
dow in TextMate uses this subclass and the subclass re-
ceives the messages about changed files.

TMPluginController TestSuggestionsPlugin StatusBar WindowPoser
: 1 1
L initWithPlugInController

swizzleMethod

poseAsClass

—
createMenuItems

|
| |
1 1
| |
| |
1 1

|
| '
| |
' |
1 |
. |
I |
1 1
| |
' '
| |
| |
' '
| |
| |
1 1
| |
| |
| |
| |
' '
| |
| |
' '
| |
| |
1 1
| |
' '
| |
| |
' '
| |
| |
1 1

Figure 4.4: Sequence Diagram of plugin initialization

The plugin is designed according to the Model-View-
Controller paradigm (see Krasner and Pope [1988]). The
updated row and file information is routed to an instance of
the RelevantTestcases class. This instance represents
the model layer. Using row index and file, the model deter-
mines the method situated at the current location. It then
looks up the list of test cases related to that method.

This list of relevant test cases is observed by a table view
contained in the test case window. Whenever the list
changes, the table is automatically updated. The table
view also offers the user the possibility to order the test
case list by relevancy, test case or file name. The de-
fault ordering is by relevancy. In Figure 4.6/ the test case
window containing a list of test case suggestions can be
seen. User interaction is managed by an object of the class
RelevantTestcasesController. It instructs TextMate
to open a test case file when the user double-clicks on one

Model layer

View and Controller
layer

42

4 Prototype

of the displayed test cases.

StatusBar relevantTestCases TableView

1
setLineNumber i
1
1

@ setLineNumber

M
calculateRelevantTestCases

>
oldSetLineNumber observeValueForKeyPath

L]

Figure 4.5: Sequence Diagram of messages after user navi-
gation

800 [£, message expectation.rb — rspec

| % message_expectation.rb |

raise an instance of if, creating it with +newr. IF the exception -
s5 # class initializer requires any parameters, you must pas
56 # instance and not the class = =
S0 dof and rateeCerception-Erception Itor lIndow
58 @exception_to_raise = exception
B end 0
60
61 def and_thronCsymbol)
62 symbol _to_throw = synbol
63 end
64
65 def and_yield(*args)
66 @args_to_yield << args
67 self
68 end
69
70 def matches(sym, args)
71 @sym == sym and Eargs_expectation.check_args(args)
72 end
73
74 def invokeCargs, block) A
s Eorder_group.handle_order_constraint self .
76 v
Line: 66 Colurn: 25 Ruby t v SoftTabs: 2 & and vieldt*args)
000 Tests using current method
Test Name File Name Hits
should yield one arg 3 times consecutively to blocks that take a variable number of arguments spec/spec/mocks/mock_spee.rb 6
should yield many args 3 times consecutively to blocks that take a variable number of arguments spec/spec/mocks/mock_spec.rb 6
should yield single value 3 times consecutively spec/spec/mocks/mock_spec.rb 6
should yield two values 3 times consecutively spec/spec/mocks/mock_spec.rb 6
should fail when calling yielding method consecutively with wrong arity spec/spec/mocks/mock_spec.rb 6
should yield multiple times with multiple calls to and_yield spec/spec/mocks/stub_spec.rb 4
should yield 0 args multiple times to blocks that take a variable number of arguments spec/spec/mocks/mock_spec.rb 4
should yield a specified object spec/spec/mocks/stub_spec.rb 2

should yield a specified object and return another specified object
should return value from block by default

should yield 0 args to blocks that take a variable number of argu
should yield one arg to blocks that take a variable number of arg

should yield many args to blocks that take a variable number of ard®

<t

N

Figure 4.6: Test case suggestions for the selected method
starting at line 65

43

Chapter 5

Evaluation

In order to evaluate the prototype I conducted a user study
comparing the effectiveness of debugging with and with-
out the help of the prototype.

5.1 Participants

The prototype was evaluated with eight male participants.
Only one participant had prior knowledge in software tests
as presented in Section [2.2}—{Software Testing|”. The age
range was from 21 to 36 years with an average of 27.5 years
and a standard deviation of 5. All but one participant had
a professional background in Ruby, working either as a
student assistant or as a developer in a company. Three
of the participants had already worked with the RSpec
framework (see Section|2.3.3+—"{Example: RSpec(’) but none
had worked with the Liquid library (see Section [2.3.3}—
“Example: Liquid|"). Apart from one, all participants rated
themselves as having at least fair knowledge of TDD.

52 Set-Up

The evaluation was designed with a single independent

Each participant
completed two tasks

44

5 Evaluation

Program
comprehension
measured via task
completion time

Provided acceptance
test indicated task
completion

variable controlling whether participants had access to the
prototype or not. Each participants had to work on two
software maintenance tasks which involved finding and
fixing a bug in an existing software project. Each partici-
pant had access to the prototype in one of the two task. The
order in which the tasks were presented and access to the
prototype were balanced across participants to control pos-
sible learning effects.

To measure the level of program comprehension the dura-
tions until a participant found and fixed a bug were taken.
Additionally, the participants were asked to subjectively
rate their program comprehension. Several questionnaires
and an interview after the evaluation were used to obtain
qualitative data about the work of the participants with the
prototype.

The evaluation was done on Apple Macs running OS X
10.5. TextMate was used in version 1.5.8, the latest version
at the time of writing. The displays used were at least 20”
in size, to allow showing two TextMate windows side by
side. The left window was used to display the files contain-
ing the test cases while the right showed the actual source
files.

Each participant first had to fill out questionnaire to
get basic information about their general knowledge of
programming, testing and test-driven development. They
were also asked if they already have experience with the
used Open Source projects.

Next, I gave the participants the general instructions
applicable to both tasks. They should imagine being part
of a team maintaining a certain piece of software. A bug
has to be fixed in a component of the software with which
they do not have any experience. Since the bug is critical it
has to be fixed quickly. They will receive a short description
of the bug, expected and received output and a hint where
to start. Their work consists in finding the cause of the bug
and, if possible, to fix it.

The participants had 30 minutes to complete each task. A
special test case was supplied which acted as an acceptance
test. I instructed the participants how this test case can be

52 Set-Up

45

run so they can control if their proposed fix is successful.
The existing test cases of each project could be executed,
too, so participants could control if their fix affected other
parts of the program. Before the first use of the prototype
I explained the functionality and let the participants learn
how to use it to navigate between source and test files.

The participants could at any time access the printed task
explanation and were free to take notes while performing
the task. In general participants were not allowed to use
the Internet. One exception was made for a participant with
only basic knowledge of Ruby to look up the definition of
a method in the official Ruby documentation. Participants
were not allowed to use a debugger but could change code
and see the result when running any of the existing test
cases.

Immediately after each task, the participants had to fill
out questionnaire about their strategy for resolving the
task. This was done directly after each task to avoid con-
fusion with the other task. After both task had been com-
pleted the questionnaire[A.6|lwas given comparing the tasks
with and without the prototype.

5.2.1 Task RSpec

This task consisted of fixing a bug which occurred in the
RSpec project on February 26th, 2008. When setting a neg-
ative expectation on the result of a method of an object,
RSpec did not handle raised exceptions inside that method
correctly. Instead of letting the test fail, it would be marked
as passed.

A simple example of how to reproduce the bug is given
in Listing The class Person raises an exception when
calling its has_existing_login? method. In the test
case below a Person object is created. Using RSpec’s
should_not negative expectation method and its has-
matcher it is checked that the new object does not have an
existing login. This expectation should fail, as the method
neither returns true nor false but instead raises an excep-
tion. But the test reports success instead.

Access to debugger
or Internet generally
disallowed

46

5 Evaluation

11

12

class Person
def has_existing login?
raise RecordNotFound
end
end

describe "When creating a new person" do
it "not have an existing login" do
person = Person.new
person.should_not have_existing_login
end
end

Listing 5.1: Minimal example of the RSpec bug

The bug is located inside the has-matcher. An instance of
this matcher is generated if RSpec encounters a call to an
unknown method starting with have_. To evaluate the re-
sult of the matcher RSpec then calls its mat ches? method,
which is shown in Listing The matcher then tries to
find a corresponding method on the test subject adhering
to coding conventions of Ruby. In this case, the unknown
method is have_existing_login and the test subject is
the new Person object. It converts the method name to
has_existing_login? and calls this method on the test
subject.

The bug is caused by the exception handling inside the
matches? method. Any exception thrown inside the test
subject is rescued directly in the matcher which then re-
turns false. As a negative expectation using should_not
expects a return value of false it incorrectly reports a suc-
ceeded test.

The fix used by the RSpec project was to simply remove all
exception handling inside the matcher, and let the excep-
tion be handled on a higher level.

As the bug has been fixed in the mean time the
participants were given a version of the source code
just before the fix. The gitE] commit identifier is

'http:/ / git-scm.com/

10

11

13

52 Set-Up

47

def matches? (target)
@target = target
begin
return target.send(predicate, =*Q@args)
rescue => (@error
This clause should be empty, but rcov
will not report it as covered unless
something (anything) is executed
within the clause
rcov_error_report = "dummytext"
end
return false
end

Listing 5.2: RSpec code containing the bug

12df2fb5feb7f20balb3b7d6b2ece4ba5f560b8a. Some exist-
ing test cases of this version had to be removed as they were
not running successfully. These test cases did not have any
relationship to the task. I created the coverage data with
the tool described in Section 4.3.1—"{Preprocessing|” for the
remaining tests.

GIT:

Git is a distributed version control system. Contrary
to other common version control systems, revisions and
commits are identified by a hash of their respective con-
tent and not by an incrementing number. This naming
scheme allows for globally unique identifiers.

After explaining the general functionality of RSpec and giv-
ing the participants some examples of how it is used, I
handed them the task description. This description con-
sisted of an explanation how to cause the bug, what the
expected output is and the current, false output. I opened
the given initial starting file and started the timer.

Definition:
git

48

5 Evaluation

5.2.2 Task Liquid

The bug to be fixed in this task was reported to the Liquid
project on February 12th, 2009. A fix was attached to the
bug report but it is still not integrated into the main repos-
itory. If in an if statement a variable containing an empty
string is compared with an empty string constant the ex-
pected result is t rue but false is returned instead.

The simplest way to reproduce the bug is given in List-
ing The variable empty_string is assigned an empty
string. The comparison in line 1 with the empty string con-
stant always yields false, which prevents the output of
line 2.

{% if empty_string == "" %}
<p>This will not be printed</p>
{% endif %}

Listing 5.3: Minimal example of the Liquid bug

This bug is caused by one of the regular expression used by
Liquid to tokenize the template. The regular expression can
be seen in Listing It is used to detect single or double
quoted strings inside expressions. It matches every sub-
string starting and ending with either a ” or ’. The bug is
introduced in the [""]+ and ["’] + parts. The + operator
causes the regular expression to only match if at least one
character is contained inside the quotes.

QuotedString = /"[""]1+"|" [~]+ /
Listing 5.4: Liquid code containing the bug

The proposed fix is quite simple. By using the » operator
instead of the + operator the regular expression will also
match empty quoted strings.

As the bug has not been fixed in the Liquid project
I provided the participants with the most recent ver-
sion of the code identified with the git commit hash
ed1b542abf73d1d7c1885ee158410c6575a95668. As none of
the existing test cases cover the usage of empty strings they

5.3 Results

49

all pass.

I explained the general functionality of Liquid with a sim-
ple template and gave them the task description. This de-
scription contained the template from Listing [5.3| and the
expected and resulting output. I opened the initial starting
file and started the timer.

5.3 Results

5.3.1 Quantitative

In the RSpec task 63% of participants found the bug and
also found a way to fix it. In the Liquid task 75% found
the cause of the bug but only 50% found a way to fix it.
With respect to the independent variable, 75% found the
cause of the bug when using the prototype compared to
63% when not using the prototype. 50% of the participants
fixed the bug successfully when using the prototype com-
pared to 63% when not using the prototype. The difference
in task completion between both groups is not significant.

80%
60%
40%

20%

Percentage of participants

0%

found bug fixed bug

B with prototype I without prototype

Figure 5.1: Percentage of participants solving each subtask

No significant
difference in program
comprehension

50

5 Evaluation

When using the
prototype
participants spent
more time with test
cases

Availability of test
cases highly valued
by participants

The average completion times for the bug-finding and bug-
fixing subtasks did not vary significantly. A paired, one-
sided Student’s t-test for each subtask did not reveal any
statistically significant difference. The average time to find
the cause of the bug was 21.6 min for the prototype group
and 20.9 min for the control group with a standard devia-
tion of 4.3 and 5.5 min respectively.

30
=S
£ 22,5
[0)
£
:S 15
5
£
o 7,5
)

0

error found error fixed

Bl with prototype I without prototype

Figure 5.2: Average task completion time

The analysis of the questionnaire yielded more interesting
results. In question B1 participants were asked how much
of the total time used they spent inspecting the test cases.
When using the prototype participants spent on average
35% with the test cases compared to only 17.5% without
the prototype. Although the standard deviation was rela-
tively high, a paired one-sided Student’s t-test confirmed a
significant difference.

Most participants, regardless if just having worked with the
prototype or not, were in high agreement with question B5,
were it was asked if they would always liked to have test
cases to consult. No significant difference was found for the
other questions.

Questions B2 to B4 concerned the perceived helpfulness of
the test cases for understanding the code, finding and fix-

5.3 Results

51

60%

45%

30%

15%

Percentage of task completion time

0%

B with prototype I without prototype

Figure 5.3: Average time spent inspecting test cases

ing the bug. No trend was found in the answers for these
questions between groups.

5.3.2 Qualitative

After completion of the user test the participants were
asked for general comments about the usage and the effect
the prototype had on their maintenance strategy.

e Two participants complained that the measure of rel-
evancy for the test cases was not clear to them. In the
presented prototype the raw relevancy measure was
shown. In the prototype this was just the number of
calls to the currently inspected method during each
test case. These participants were not sure how this
value was relevant to their work. As the main focus
of the prototype was on the interaction and not on the
relevancy algorithm this does not come as a surprise.
More work is needed to come up with a better rele-
vancy measure and how to convey this to the user.

e One participant mentioned that it was helpful to see
a list of test cases. As he was not very familiar with

Ordering of test
cases unclear

Being remembered
of test cases
considered helpful

52

5 Evaluation

Quality of test cases
is important

TDD experience
affects usage of
prototype

Provide reverse
navigation from test
cases to used code

TDD this reminded him of the additional artifacts
available for the maintenance task. This is in accor-
dance with the results for question B1 of the question-
naire, where participants were asked how much time
they spent inspecting test cases.

Two participants commented that the format how the
test cases were programmed did not help them find-
ing out how to use a method or class inside the code.
This might be because many test cases use special
helper methods to instantiate objects or assert cer-
tain results. These helper methods are of no use in
the actual program, as they are highly specialized
for the test environment. Such they present an addi-
tional abstraction to overcome in order to understand
the tested code. This might represent a fundamental
problem in using test cases as a form of example code.

Three participants explicitly mentioned that they
liked the easy navigation between the currently in-
spected method and its test cases.

One participant did never look at any test case and
did not find any of the bugs. He stated that, as he has
no experience with TDD, he just followed his usual
bug finding strategy. As it was not possible to just
run the presented projects (both are libraries without
any UI) he resorted to manually following the flow
through the methods. This shows that the prototype
requires a basic understanding of what a test cases
provides and how to use it.

One participant would have liked a list of relevant
methods for each test case, i.e. the reverse of what is
currently presented in the prototype. This would re-
sult in a more generally usable navigation technique
between test cases and corresponding code. It is not
as trivially implementable, though, as in general each
test cases indirectly calls many methods, so the possi-
ble set of relevant methods would be quite big, and a
better relevancy algorithm would be needed.

53

Chapter 6

Discussion

The goal of the prototype was to support program com-
prehension during software maintenance by improving ac-
cess to the test cases. The idea was to give better access
to the test case artifacts created when developing with the
TDD process. To evaluate the prototype, a user study was
performed using real maintenance tasks from two Open
Source projects. In the following, I will discuss the re-
sults of the user study and put them in relation to the re-

quirements (see Section [4.2—"Requirements|’) of the origi-

nal prototype.

6.1 User Study Discussion

The results did not yield a clear picture about the effect of
the prototype on maintenance performance. One problem
was the small sample size, as it was difficult to find pro-
grammers with experience in Ruby. More generally, the
evaluation of tools supporting software engineering tasks
is difficult, since external variables like programmer expe-
rience and task difficulty are hard to control

This comes not as a big surprise. The studies presented in
Section [B.1}—"{Evaluating the Effectiveness of Test-Driven|

[Development]” which used real software projects as the ba-

sis for the tasks showed similar differing results: Some

Performing realistic
evaluations is difficult

54

6 Discussion

Displaying of test
cases well received

Relevancy measure
unclear

studies demonstrating more productivity and others only
better external quality.

The prototype provided a better visibility of the test cases
when inspecting source code, as shown by the user com-
ments and by the results for question B1. It seems that espe-
cially for people without much experience in TDD it helps
to prominently display the test cases. An experienced TDD
developer might access the test cases automatically as a
part of her maintenance workflow, whereas inexperienced
developers can benefit from bringing relevant test cases to
their attention automatically.

The decision to focus the initial prototype on Ruby was
made as most Ruby projects are developed with TDD prac-
tices. As the usefulness of the technique presented in this
work depends directly on the quality of the test cases of the
underlying software project, focussing on Ruby made the
selection of tasks for the evaluation easier.

Another problem during the evaluation was finding the ex-
act time when the source of a bug was located. Partici-
pants were instructed to notify the experimenter when they
thought to have found the bug. But this event cannot be
pinpointed exactly in time. In some cases it turned out that
the participants did not find the actual source of the bug but
rather another symptom, which was revealed in discussion
with the experimenter. In other cases participants forgot to
notify the experimenter and directly proceeded to fix the
bug.

6.2 Requirements Discussion

The first requirement was that relevant test cases should
be displayed given a method currently selected by the pro-
grammer. This was realized and recognized by user feed-
back as useful.

A problem mentioned by several participants was how to
interpret the relevancy measure for each test case. The pro-
totype gave no indication how the relevancy measure for a

6.2 Requirements Discussion

55

certain test case was computed. The acceptance of a mea-
sure is a critical point for acceptance of the entire tool by
developers, though. More work needs to be done in order
to communicate this measure efficiently.

Additionally, the employed algorithm to calculate the rel-
evancy measure of a test case was very basic. The algo-
rithm only counts the number of times a certain method is
invoked by a given test case. Other measures might give
better results. For example, the number of indirect method
calls between the call inside the test case and the selected
method (i.e. the stack depth) can be used to fine tune the
relevancy measure. A test case which calls a given method
only through many indirections is probably not as relevant
as a test case which directly calls a method.

The second requirement was that the tool should integrate
well with an existing editor and should automatically up-
date the test case suggestions while the programmer nav-
igates the source code. All participants had at least basic
experience using TextMate, and had no problems integrat-
ing the tool into their normal workflow.

The last functional requirement was that the tool should
offer easy navigation between a given method and its rele-
vant test cases. This requirement was fulfilled by the pro-
totype. Some participants explicitly mentioned that they
liked the easy navigation. It was mentioned, though, that
reverse navigation (from a test case to methods it uses)
might be practical. This can be easily achieved with the
data currently used and should probably be implemented
in future versions of the prototype.

Test case suggestions are currently calculated by a sepa-
rate tool and thus not automatically updated when code
is changed. As expected, this was not a problem during the
user study. In both tasks participants only had to change a
small part of a method in order to fix the bug. This change
did not have a great effect on the code coverage of the exist-
ing test cases and hence the relevancy measure. But further
work is needed to reduce the time complexity of the rele-
vancy algorithm in order to use the editor plugin during
real software maintenance.

Prototype integrated
well with TextMate

56

6 Discussion

6.3 Summary

While no hard data about the effect on maintenance per-
formance was found, the overall positive user comments
encourage further work on the better integration of TDD
artifacts into the maintenance process. As shown in Robil-
lard et al. [2004], methodical investigation of an unknown
code base is key to better maintenance performance. Easier
navigation between related parts of the code base can help
developers investigate source code more efficiently.

Participants especially liked the navigational capabilities of
the prototype and gave valuable feedback on how to im-
prove the navigation further. More work is needed to come
up with a better and clearer relevancy measure.

57

Chapter 7

Conclusion

7.1 Summary and Contributions

Improving program comprehension is an active field of re-
search. Beginning from models how programmers compre-
hend code, over ways to measure program comprehension
to tools for improving comprehension, future research is
needed.

In this thesis, I presented a novel approach to improve pro-
gram comprehension by using a newly developed tool that
allows for directly accessing test cases from source code.
Existing test cases are used as example code on how to use
certain parts of the code.

This approach is targeted to projects employing TDD. In
doing this, one can expect to have an existing test suite cov-
ering most if not all parts of a program. This has the advan-
tage of being able to expect certain artifacts like test cases
to always be available, making them good candidates for
improving comprehension.

After having explained the basic idea behind this approach,
I defined several requirements for an initial prototype. The
prototype was then developed and evaluated in a user
study. The user study did not show a significant positive
impact on program comprehension. Qualitative user feed-

58

7 Conclusion

back was positive, though.

7.2 Future Work

7.2.1 Relevancy Measure

The used measure to determine the relevancy of test cases
for a given method was not clear to every participant. Bet-
ter ways to communicate the relevancy measure should
be investigated in the future. This could involve simply
finding better means to communicate to the user how the
relevancy measure is computed. Another possibility is to
change the visualization of test case suggestions: Instead of
a simple ordered list, one could present the test cases at the
top of their call graph and show the investigated method
at the bottom. This approach would have the advantage
that other relevant parts connected to this method can be
displayed inside the call graph, as well.

The actual relevancy measure can be improved, too. Cur-
rently, only the number of times a method is called by a
certain test case is regarded. But a test case for a high-level
function of a program might indirectly call many subsys-
tems which this high-level function depends on. Other ap-
proaches could take the stack depth between a test case and
a method into account as a measure of relevancy.

7.2.2 Relevancy Calculation

In the realized prototype, as of now, the calculation of rel-
evancy is not performed in real-time. For example, calcu-
lating the relevancy for all test cases for the RSpec project
used in the user study takes more than 2 hours on a current
generation processor. This is why the prototype performs
this calculation offline and does not update the suggestions
automatically when code is changed.

No automatic update of suggestions will be a problem if the
presented tool is to be used for real software maintenance

7.2 Future Work

59

tasks. While the developer changes code, the suggestions
will become stale and in the worst case convey wrong in-
formation.

A possible solution to allow automatic updates of sugges-
tions is to improve the efficiency of the relevancy calcula-
tion. For example, when changing existing test cases, rel-
evancy calculation only has to be repeated for those test
cases. The relevancy could also be updated in the back-
ground without interrupting the programmer’s workflow.

7.2.3 Navigation

Based on the user feedback, the navigational capabilities of
the editor plugin were well accepted. Additional naviga-
tion options would be useful, though. A simple improve-
ment would be to offer navigation from a test case to its
used methods, based on the same relevancy measure. This
could help in easier discovery of related program elements.

Other possible future improvements include the integra-
tion of the plugin into the editing environment. Instead of
showing the test cases in a separate window they could be
accessed directly from inside the editor window.

7.2.4 Quality of Test Cases

User feedback revealed that not all test cases are equally
helpful for program comprehension. Macros or special
helper functions only used inside test cases can negatively
affect the usefulness of test cases as example code.

Future work could determine impacts on the readability of
test cases. The results of this work could be used as rec-
ommendations how to construct better test cases when em-
ploying TDD.

61

Appendix A

Evaluation Materials

62

A Evaluation Materials

Aufgabeninstruktionen

Stellen Sie sich vor, als neuer Entwickler in einem gréBeren Softwareprojekt zu arbeiten.
Sie erhalten jeweils ein Fehlerticket fur zwei Komponenten des Systems, an denen Sie
zuvor noch nie gearbeitet haben. Die Fehler missen so schnell wie mdglich behoben
werden. Sie kdnnen keine Fragen an die Autoren der Komponenten stellen, da sie extern
erstellt wurden und die Antwort zu lange brauchen wirde.

Sie erhalten nacheinander jeweils eine Fehlerbeschreibung, welche die Eingabe, die Soll-
Ausgabe und die Ist-Ausgabe enthélt. Der Projektleiter hat bereits die Datei identifiziert, in
der der Fehler enthalten ist.

Ihre Aufgabe ist es, den Ort des Fehlers zu lokalisieren und einen Lésungsvorschlag zu
erarbeiten.

Figure A.1: General instructions for user test participants

63

Aufgabe RSpec

Fehlerbeschreibung
Wenn beim Uberprifen einer “should_not™-Erwartung eine Exception auftritt, meldet
RSpec keinen Fehler.

class Person
def has_existing_login?
raise RecordNotFound
end
end

Erwartetes Ergebnis
describe Person do
it "SHOULD FAIL" do
person = Person.new
person.should_not have_existing_login
end
end

Erhaltenes Ergebnis
describe Person do
it "DOES NOT FAIL" do
person = Person.new
person.should_not have_existing_login
end
end

Fehlerhafte Datei

has.rb

Figure A.2: Instructions for the RSpec task

64

A Evaluation Materials

Aufgabe Liquid

Fehlerbeschreibung

Bei der Prifung auf Gleichheit von einem leeren String mit einer Variable die einen leeren
String enthalt wird false zurlckgeliefert
Erwartetes Ergebnis

{% if empty_string == " %}

<p>This should be printed<p>

{% endif %}

Erhaltenes Ergebnis

{% if empty_string == " %}

<p>This is not printed<p>

{% endif %}

Fehlerhafte Datei

if.rb

Figure A.3: Instructions for the Liquid task

65

Gewahlte Antworten bitte unterstreichen

Fragebogen 1

[1 ménnlich [] weiblich

Alter: Beruf:

A1 Wie viele Jahre Programmiererfahrung haben Sie?

A2 Wie viele Jahre Erfahrung haben Sie im Testen von Software?

A3 Wie viele Jahre Berufserfahrung als Programmierer haben Sie?

A4 Wie wirden Sie Ihre Ruby-Kenntnisse bewerten?

Profi Fortgeschritten Anfénger

Keine Kenntnisse

Wie wirden Sie Ihre RSpec Kenntnisse bewerten?

Profi Fortgeschritten Anfénger

Haben Sie bereits am RSpec-Projekt mitgearbeitet?

Keine Kenntnisse

Wie wiirden Sie lhre Liquid Kenntnisse bewerten?

Profi Fortgeschritten Anfanger

Haben Sie bereits am Liquid-Projekt mitgearbeitet?

Keine Kenntnisse

Figure A.4: Questionnaire filled out before the user test

66

A Evaluation Materials

Gewahlte Antworten bitte unterstreichen

Fragebogen Aufgabe

B1 Das Betrachten der Testfélle hat mehr als ____ der Gesamtzeit in Anspruch genommen

> 80% 79% - 60% 59% - 40% 39% - 20% <20%

B2 Die Testfalle haben mir geholfen beim Verstehen des Codes

Stimme voll zu Stimme bedingt zu Neutral Stimme eher nicht zu Garnicht

B3 Die Testfélle haben mir geholfen beim Finden des Fehlers

Stimme voll zu Stimme bedingt zu Neutral Stimme eher nicht zu Garnicht

B4 Die Testfélle haben mir geholfen beim Beheben des Fehlers

Stimme voll zu Stimme bedingt zu Neutral Stimme eher nicht zu Garnicht

B5 Ich wiirde mir wiinschen, bei realen Fehlersuchen immer auf Testfélle zurlickgreifen zu
kénnen (auch wenn der eigentliche Fehler nicht durch einen Testfall entdeckt wurde)

Stimme voll zu Stimme bedingt zu Neutral Stimme eher nicht zu Garnicht

Figure A.5: Questionnaire filled out after each task

67

Fragebogen 2

C1 Bei welcher Aufgabe hatten Sie das Gefiihl, schneller ein gutes Codeverstandnis zu haben?

C2 Bei welcher Aufgabe hatten Sie schneller eine Idee, wie der Fehler zu beheben ist?

Bemerkungen und Vorschlage

Figure A.6: Questionnaire filled out after the user test

69

Appendix B

Bug Tickets

70

B Bug Tickets

L should_not doesn't raise ARNotFound error #311

Yi Wen 1.1.4
We have a spec like this:
describe Person, "when checking if a new person has an existing
login" do
it "should return false" do
person = Person.new :login => Login.new
person.should not have_existing login
end
end
The implementation is :
def has_existing_login?
Person.find(id).has_login?
end
We expected it raises ActiveRecordNotFound error, but it passes.

If we use "person.has_existing_login?.should be_false" instead, it raises an
error as expected:

|/ resolved

ActiveRecord::RecordNotFound in 'Person when checking if a new person has

an existing login should return false'

Couldn't find Person without an ID

Comments and changes to this ticket

Pat Maddox
February 27th, 2008 @ 11:10 PM

Fix is at http://github.com/pat-maddox/rsp... (http://github.com/pat-
maddox/rspec/commit/a38bc6d83fb6a4181b7cd9ac5f640d5d1e4a95a5)
git pull git://github.com/pat-maddox/rspec.git master:a38bc6d8

David Chelimsky
February 28th, 2008 @ 06:23 AM

Fixed in a38bc6d

Figure B.1: Original bug report for the RSpec taskﬂ

“https:/ /rspec.lighthouseapp.com/projects /5645 / tickets /311-should not-doesn-t-raise-
arnotfound-error

71

L QuotedFragment doesn't support empty strings #8 new
Daniel Sheppard

Currently {% if values.foo == "" %} will always return false due to the fact that
""isn't recognised as part of the expression.

e fix_empty_strings.diff 1.5 KB

Comments and changes to this ticket

Henning Kiel
March 10th, 2009 @ 11:01 AM

| created a test case in regexp_text.rb for the same problem. | attached the diff
for regexp_text.rb to this message. Above fix makes this test pass.

regexp-test.diff 404 Bytes delete

-} Priit Haamer
April 1st, 2009 @ 03:25 AM

With empty strings, cycle will fail too, for example

{% cycle '', 'foo', '', 'bar' %}

Figure B.2: Original bug report for the Liquid taslﬂ

“https:/ /jadedpixel.lighthouseapp.com/projects /11053 /tickets /8-quotedfragment-doesnt-

support-empty-strings

73

Bibliography

Lowell Jay Arthur. Software evolution: the software mainte-
nance challenge. Wiley-Interscience, New York, NY, USA,
1988. ISBN 0-471-62871-9.

Dave Astels. A new look at test driven development. July
2005.

Kent Beck. Test-Driven Development By Example. Addison
Wesley, 2002.

Thirumalesh Bhat and Nachiappan Nagappan. Evaluating
the efficacy of test-driven development: industrial case
studies. In ISESE ‘06: Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering,
pages 356-363, New York, NY, USA, 2006. ACM. ISBN 1-
59593-218-6. doi: http://doi.acm.org/10.1145/1159733.
1159787.

S. D. Conte, H. E. Dunsmore, and Y. E. Shen. Software en-
gineering metrics and models. Benjamin-Cummings Pub-
lishing Co., Inc., Redwood City, CA, USA, 1986. ISBN
0-8053-2162-4.

Alastair Dunsmore and Marc Roper. A comparative eval-
uation of program comprehension measures. The Journal
of Systems and Software, 52(3):121-129, June 2000.

Boby George and Laurie Williams. An initial investigation
of test driven development in industry. In SAC "03: Pro-
ceedings of the 2003 ACM symposium on Applied computing,
pages 1135-1139, New York, NY, USA, 2003. ACM. ISBN
1-58113-624-2. doi: http://doi.acm.org/10.1145/952532.
952753.

Daniel M. German, Peter C. Rigby, and Margaret-Anne
Storey. Using evolutionary annotations from change logs

74

Bibliography

to enhance program comprehension. In MSR 06: Proceed-
ings of the 2006 international workshop on Mining software
repositories, pages 159-162, New York, NY, USA, 2006.
ACM. ISBN 1-59593-397-2. doi: http://doi.acm.org/10.
1145/1137983.1138020.

Andrew J. Ko and Brad A. Myers. Debugging reinvented:
asking and answering why and why not questions about
program behavior. In ICSE '08: Proceedings of the 30th in-
ternational conference on Software engineering, pages 301-
310, New York, NY, USA, 2008. ACM. ISBN 978-1-
60558-079-1. doi: http://doi.acm.org/10.1145/1368088.
1368130.

Andrew]. Ko and Brad A. Myers. Finding causes of pro-
gram output with the java whyline. In CHI '09: Pro-
ceedings of the 27th international conference on Human fac-
tors in computing systems, pages 1569-1578, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-246-7. doi:
http://doi.acm.org/10.1145/1518701.1518942.

Jiirgen Koenemann and Scott P. Robertson. Expert problem
solving strategies for program comprehension. In CHI
'91: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 125-130, New York, NY, USA,
1991. ACM. ISBN 0-89791-383-3. doi: http://doi.acm.
org/10.1145/108844.108863.

Glenn E. Krasner and Stephen T. Pope. A cookbook for us-
ing the model-view controller user interface paradigm in
smalltalk-80. J. Object Oriented Program., 1(3):26—49, 1988.
ISSN 0896-8438.

P]J. Layzell and L. Macaulay. An investigation into soft-
ware maintenance-perception and practices. pages 130—
140, Nov 1990. doi: 10.1109/ICSM.1990.131342.

Jochen Ludewig and Horst Lichter. Software Engineering.
dpunkt.verlag, 2007.

M.M. Muller and O. Hagner. Experiment about test-first
programming. Software, IEE Proceedings -, 149(5):131-136,
Oct 2002. ISSN 1462-5970. doi: 10.1049/ip-sen:20020540.

Glenford J. Myers. The art of software testing. Business data
processing, a Wiley series. Wiley (New York), 1979.

Bibliography

75

Martin P. Robillard. Automatic generation of suggestions
for program investigation. In ESEC/FSE-13: Proceedings
of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 11-20, New
York, NY, USA, 2005. ACM. ISBN 1-59593-014-0. doi:
http://doi.acm.org/10.1145/1081706.1081711.

Martin P. Robillard, W. Coelho, and G.C. Murphy. How
effective developers investigate source code: an ex-
ploratory study. Software Engineering, IEEE Transactions
on, 30(12):889-903, Dec. 2004. ISSN 0098-5589. doi:
10.1109/TSE.2004.101.

Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Ques-
tions programmers ask during software evolution tasks.
In SIGSOFT "06/FSE-14: Proceedings of the 14th ACM SIG-
SOFT international symposium on Foundations of software
engineering, pages 23-34, New York, NY, USA, 2006.
ACM. ISBN 1-59593-468-5. doi: http://doi.acm.org/10.
1145/1181775.1181779.

T. Tenny. Program readability: procedures versus com-
ments. Software Engineering, IEEE Transactions on, 14(9):
1271-1279, Sep 1988. ISSN 0098-5589. doi: 10.1109/32.
6171.

A. Von Mayrhauser and A.M. Vans. Program comprehen-
sion during software maintenance and evolution. Com-
puter, 28(8):44-55, Aug 1995. ISSN 0018-9162. doi:
10.1109/2.402076.

N. Wilde and C. Casey. Early field experience with the
software reconnaissance technique for program compre-
hension. Software Maintenance, IEEE International Confer-
ence on, 0:312, 1996. ISSN 1063-6773. doi: http://doi.
ieeecomputersociety.org/10.1109/ICSM.1996.565034.

Norman Wilde and Michael C. Scully. Software reconnais-
sance: mapping program features to code. Journal of Soft-
ware Maintenance, 7(1):49-62, 1995. ISSN 1040-550X. doi:
http://dx.doi.org/10.1002 /smr.4360070105.

L. Williams, E.M. Maximilien, and M. Vouk. Test-driven
development as a defect-reduction practice. pages 34—45,
Nov. 2003. doi: 10.1109/ISSRE.2003.1251029.

77

Index

acceptance test, [44]
acceptance test cases, [10] @
architecture diagrams,
artifacts,

black-box tests,

code comments,
code comprehension, [f]
- tool support, [§|

code coverage, [9)

cognition models,
Condition coverage,

Decision coverage,

defect rate,

equivalence classes, [J
example code,

executable specification,
Execution tests, [10]

external documentation,
Extreme Programming, [T1]

integration test case, [10]

Liquid, [T7, A9
Method Swizzling,
Model-View-Controller,

productivity,

program comprehension, 6,
psychological models,

RCov,
refactoring,

78

Index

regression tests, [T}

relevancy measure,l. 51} 54, 56} 58] [F9

requirements specifications, [1} [31]

RSpec, [T5
Ruby,

SLOC, [6}[[6}[[7]

software development process,
software maintenance, [T} f
software maintenance phase, 2]
software metric, [6]

software process model,
Software testing, [§]

software testing

- formal testing, [J]

Source lines of code, see SLOC
specification, [9} [10]

- formal specification, [9]
statement coverage, [T1} 33|
system test case, [I0]

Systematic tests,

TDD, see test-driven development, @ . . .
test cases, [T} 218 [I5] 24} 32) 33 &) A1} 4]

test environment, [9]
test inputs,

test protocol, [9]

test runner, 37]

test suite, 2} [12} 2]
test-driven development, 4

TextMate, 35} [44]
think-aloud, [6]
Throw-away-tests,

unit test case, [10]

unit tests, 15 22]
Use Case, [7]

waterfall model,
white-box tests,

Typeset June 2, 2009

	Abstract
	Überblick
	Acknowledgements
	Conventions
	Introduction
	Structure

	Theory
	Program Comprehension
	Software Testing
	Test Process
	Classification of Test Cases
	Code Coverage

	Test-Driven Development
	Process Model
	Classification
	Test-Driven Development in Practice
	Example: RSpec
	Example: Liquid

	Related Work
	Evaluating the Effectiveness of Test-Driven Development
	Tools for Program Comprehension
	Software Reconnaissance
	Automatic Generation of Suggestions for Program Investigation
	Evolutionary Annotations
	Whyline

	Prototype
	Motivation
	Requirements
	Non-functional Requirements

	Design
	Preprocessing
	Data Format
	Editor Integration

	Evaluation
	Participants
	Set-Up
	Task RSpec
	Task Liquid

	Results
	Quantitative
	Qualitative

	Discussion
	User Study Discussion
	Requirements Discussion
	Summary

	Conclusion
	Summary and Contributions
	Future Work
	Relevancy Measure
	Relevancy Calculation
	Navigation
	Quality of Test Cases

	Evaluation Materials
	Bug Tickets
	Bibliography
	Index

