DraglLocks: Handling Temporal Ambiguities in Direct
Manipulation Video Navigation

Thorsten Karrer

Moritz Wittenhagen

Jan Borchers

RWTH Aachen University
52074 Aachen, Germany
{karrer, wittenhagen, borchers} @cs.rwth-aachen.de

ABSTRACT

Direct manipulation video navigation (DMVN) systems al-
low to navigate inside video scenes by spatially manipulat-
ing objects in the video. Problems arise when dealing with
temporal ambiguities where a time span is projected onto a
single point in image space, e.g., when objects stop moving.
Existing DMVN systems deal with these cases by either dis-
abling navigation on the paused object or by allowing jumps
in the timeline. Both of these workarounds are undesirable as
they introduce inconsistency or provoke loss of context. We
analyze current practices regarding temporal ambiguities and
introduce two new methods to visualize and navigate object
pauses. User tests show that the new approaches are better
suited for navigation in scenes containing temporal ambigui-
ties and are rated higher in terms of user satisfaction.

Author Keywords
Video navigation; direct manipulation; accessing pauses.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces. - Interaction styles.

INTRODUCTION

Navigating in videos, i.e., accessing a certain frame inside a
length of video material for viewing, still frame extraction,
or editing, has traditionally been performed using indirect
controls such as the timeline slider or direct entry of frame
numbers and time codes. Recently, several approaches have
been proposed that allow navigation by interacting with the
content of the video directly. With these direct manipulation
video navigation (DMVN) systems, objects in the video can
be grabbed and dragged along their motion trajectories, caus-
ing the video to advance or reverse accordingly [3, 4, 6, 7].

While DMVN systems have been shown to significantly in-
crease efficiency for certain in-scene navigation tasks [3, 6],
the interaction fails in the presence of certain object motion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHI’12, May 5-10, 2012, Austin, Texas, USA.

Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Figure 1. If an object occupies the same position in multiple frames, e.g.,
while pausing, the trajectory through these positions collapses to a single
point. The frames then cannot be accessed using DMVN techniques.

patterns. Figure 1, e.g., shows an object that halts its move-
ment for a couple of frames. When dragging the object across
the screen, those frames either have to be skipped—Ilosing the
context of what else happens in the scene—or one has to give
up on the direct mapping between the positions of the cur-
sor and the object. Clearly, similar problems occur whenever
an object occupies the same position in the scene at multiple
times; the object’s trajectory exhibits temporal ambiguities.
Three different cases of motion patterns related to this prob-
lem can be identified:

Recurring movements, e.g., the rotating hands of a clock or a
ball bouncing up and down. Here, problems arise mainly be-
cause it is difficult to know in which ‘iteration’ of the move-
ment the object is at the moment. When the trajectory forms
a cusp, it is unclear if the video is to be advanced forward
or backward in time when dragging an object away from the
cusp; to counter this problem, some DMVN systems enforce
directional continuity constraints [3, 7].

Self-intersecting trajectories, e.g., a looping roller coaster or
a car heading straight towards the camera. Similar to the case
of recurring movements, the mapping problems can be mit-
igated by employing temporal or arc-length continuity con-
straints during the navigation [3, 6]. If the object is at a posi-
tion where the trajectory self-crosses many times it may still
be confusing to the user.

Pauses, e.g., a model walking down the catwalk, striking a
pose and holding it for a few seconds before moving on. Ide-
ally, when interacting with an object, a DMVN technique
should allow access to those parts of the video where the ob-
ject is pausing: Assume, for example, that we drag the model
into the pose and then want to navigate to a frame inside that

pause where the lighting is perfect or the model assumes a
certain facial expression. This is a situation in which most
strategies of existing DMVN systems fail. Because the pause
only occupies a single pixel on the movement trajectory (cf.
Fig.2b) it is skipped entirely. Thus, users either miss every-
thing that is happening in the video while the object stops,
possibly failing to notice the existence of a pause at all, or
they have to switch to another means of navigation, like the
timeline slider (cf. Fig.2a), to access the video frames in the
pause. Although pauses structure a scene temporally—which
should help with navigation—, DMVN systems cannot lever-
age this advantage but are hindered by them.

In the remainder of the paper, we analyze existing approaches
to deal with temporal ambiguities and propose two different
solutions that allow pause navigation without relinquishing
control of the dragged object. We then report on a controlled
experiment, where we evaluated the effectiveness and usabil-
ity of our techniques compared to the existing approaches.

TEMPORAL AMBIGUITIES IN CURRENT DMVN SYSTEMS
The existing literature discusses recurring movements and
self-intersecting trajectories together with techniques to sup-
press undesired jumps in the video while navigating. Pauses
have been neglected so far. The current approaches rely on
modifying the distance measure d that is used to determine
the next frame f to be displayed during the interaction:

f,T) = [artggin(d(p,)]y

where p is the screen position the user is dragging the object
toand 7' C F x P is the object’s trajectory consisting of
tuples (¢, t,) of a frame number and a position.

Two classes of distance measures have been proposed: purely
spatial distance measures depending only on ,,, and spatio-
temporal distance measures depending on both ¢, and ¢ .

The most straightforward implementation of a purely spatial
distance measure is found with Goldman et al. [4].

di(p;t) = |lp — ol

While dragging an object, the system will always display the
frame where the object’s position is closest to the mouse cur-
sor. The advantage of this technique is that objects can be
very quickly repositioned along their trajectory. However, the
playback position may freely jump discontinuously over the
length of the video. Time ranges where the object pauses
are not accessible so users have to resort to using the time-
line slider to navigate inside a pause. In fact, the pauses
are skipped completely and can only be detected by sudden
changes in the rest of the frame when dragging across the
pause position.

Dragicevic et al. [3] propose a spatial distance measure that
reduces the frequency of jumps and ensures directional con-
tinuity at cusp points:

da(p,t) = Hp - tpH + ||arclen(tp,0p)H + kp

with o, being the object’s current position and kp > 0 being
added whenever the arc-length changes signs from the last

Figure 2. Schematic of the spatial extent of a pause (blue) for a) timeline
slider: No special handling of pauses, all frames are distributed evenly.
b) DMVN: Pause has no extent. ¢) DMVN with embedded timeline: Pause
is distributed over a part of the trajectory. d) DMVN with loop: The
trajectory form is altered to contain a loop representing the pause.

step. In their paper, they specifically discuss the problems of
recurring movements at cusp points and self-intersecting tra-
jectories, and they formulate directional continuity and arc-
length continuity as two requirements for DMVN systems.
Due to d being a purely spatial metric, however, their system
also skips object pauses.

Karrer et al. [6] discuss the need to disambiguate situations of
recurring movements and to avoid jumps in the video during
navigation. They propose a spatio-temporal distance function
that includes the current frame number oy.

d3(p,t) = [|(pz — tp, Py — tpys OF = t)l

This approach works reasonably well when it comes to
self-intersecting or recurring movement trajectories (but not
cusps), and it allows to easily spot pauses; the dragged object
will ‘stick’ to the beginning of the pause. Dragging the object
further, the spatial distance component outweighs the tempo-
ral one and the object will ‘snap’ to a position some time af-
ter the pause. While accessing the frames after the pause is
possible by backtracking along the trajectory, navigating the
contents of the pause is not possible.

Kimber et al. [7] propose a similar spatio-temporal distance
measure that also ensures directional continuity at cusps.

da(p,t) = co - lp —tpll +lloy —tsll +kp

with kp defined as above. Otherwise, this approach behaves
like d3 but includes a time-dependent term cgy that makes the
‘snapping’ across pauses happen more easily the longer the
dragging takes.

We can see that spatio-temporal distance measures mitigate
the problem of jumps during the interaction and at least allow
to recognize object pauses. At the same time, they do not
help to navigate the pauses, and they introduce a number of
additional problems on their own: these compound measures
have to be weighted according to the spatial and temporal
sampling rates of the video—there is no universal answer to
the question “how many pixel worth is one frame?”.

PROPOSED SOLUTIONS

Outside the domain of DM VNS, solutions to a similar class of
problems have been proposed for some time in the context of
the general domain of direct manipulation control elements
like sliders and selectors. Accessing elements in a list with-
out mapping each element to its own pixel on a slider has
been investigated among others by [1] and [2]. This prob-
lem setting is akin to navigating object pauses in DMVN in

so far as the time range of a pause is mapped in its entirety
to a single pixel, too, and thus cannot be navigated. Our ap-
proach thus borrows from these techniques: instead of chang-
ing the distance measure to navigate pauses, we locally ex-
tend the geometry of the trajectories—a technique inspired by
the Popup-Vernier [2]. Alternatively, we dynamically change
the mapping along the trajectory depending on the location of
the interaction; this idea is akin to the Alphaslider [1].

Loop

Our first technique expands the single spatial point of a pause
to a loop on the trajectory (Fig. 2c). Thus, the pause can now
be navigated in one stroke, without having to re-home to the
timeline slider. The distinct shape of a loop is a recognizable
pattern that gives users a good hint of its special meaning. The
user can navigate to the beginning (or the end respectively)
of the pause by dragging the object to the base of the loop.
Frames inside the pause are equally distributed on the loop
and are now accessible as if on a curved timeline slider.

Navigation inside the loop can be performed at different tem-
poral granularities depending on the radius of the dragging
gesture; this is similar to the micrometer interface [1] or the
mobile zoom slider [5]. Finally, the loop ensures that the rest
of the trajectory is unmodified, guaranteeing direct manipu-
lation of the object on the rest of the trajectory. To avoid the
need of traversing the loop when the user intends to navigate
to a time after the pause, the loop could be deactivated via a
quasimode [8], e.g., by holding down the control key.

Embedded Timeline

For our second technique, we change the mapping along a
short extent of the trajectory around the pause location, so that
this part controls the time of the video instead of the location
of the object (Fig. 2d). All time points on this part of the
trajectory are redistributed equally. The embedded timeline
thus does not change the form of the trajectory but changes
its meaning in a local area around the pause. Expanding the
pause into the spatial domain guarantees that we can navigate
the pause in one stroke without having to leave the object of
interest. Conserving the trajectory shape allows navigation to
a point after the pause while retaining of what happens during
apause. This comes at the cost of decoupling navigation from
the object on that part of the trajectory that is used for the
expansion. With this technique there is no way to identify the
pause from the shape of the trajectory alone; thus, we set the
color of the embedded timeline to be different from that of
the rest of the trajectory. For longer pauses, this technique
will show the same resolution problems as the timeline slider,
making it hard to navigate to a specific frame inside the pause.

Both techniques work best if used with either a spatio-
temporal distance measure or a spatial distance measure that
ensures arc-length continuity. Although pauses would be ac-
cessible even with a metric like d;, the extended geometry
could very easily be skipped involuntarily during the interac-
tion.

NAVIGATION AROUND PAUSES
We identified four different target areas on a trajectory in re-
gard to navigation around pauses: Before the pause, at the

edge of the pause, in the pause, and after the pause. In the fol-
lowing, we describe these cases for forward navigation. Nav-
igation before the pause (cf. Fig 1, frames 1-2) is equivalent
to not having a pause at all and thus is already covered by the
standard DMVN approaches. The edge of a pause (cf. Fig
1, frame 3) is the point were an object stops moving. It is
accessible easily when using spatio-temporal distance mea-
sures, because of the ‘sticking’, and when using the loop, be-
cause the pause is visually distinguishable. Navigating to the
edge is harder when using purely spatial distance measures
or the embedded timeline. Loop and embedded timeline both
support navigation in a pause (cf. Fig 1, frames 3-5). We
expect the loop to perform better for longer pauses because
the embedded timeline will suffer from resolution issues. Ex-
isting DMVN systems—regardless of the choice of distance
measure—require the use of the timeline slider to navigate in
the pause since the pause has no spatial extent. Navigation
to the area after the pause (cf. Fig 1, frames 6-7) requires
crossing the pause. This is easiest for purely spatial distance
measures, only requiring to drag the object to the target posi-
tion. Spatio-temporal distance measures may require the help
of the timeline slider to cross the pause. Both loop and em-
bedded timeline allow crossing the pause easily; if the quasi-
mode mentioned above is not implemented the loop requires
the traversal of the extended shape of the path.

EXPERIMENT

We conducted an experiment to investigate navigation perfor-
mance for purely spatial and spatio-temporal distance mea-
sures (d; and d3) and the loop and embedded timeline tech-
niques. In our implementation of loop and embedded time-
line, we also used d3 as distance measure. In the loop con-
dition, there was no quasimode and the loops were always
visible. We tested these four techniques in six different ex-
periments: navigation to a point on the edge, inside, and after
a pause, each in separate versions for long (>25s) and short
(<5s) pauses. For each of the six experiments, we used a dif-
ferent section of a longer video showing two people playing
a board game. Trajectories were created using optical flow
fields as described in [6]. We detected a pause when an ob-
ject was not moving for more than 0.2s.

Participants used a Wacom Cintiq 12WX and a stylus as an
input device. They were introduced to DMVNs before the ex-
periment and had time to familiarize themselves with each of
the four techniques on a separate video. For each experiment,
subjects were given a simple navigation task (“Navigate to the
frame where the right player rolls a six.”). After each experi-
ment, people were asked to rank the four techniques in order
of their personal preference. To avoid learning effects, partic-
ipants watched each video scene twice before performing the
task. At the end, we performed a short structured interview
with the participant.

The study design was within-subjects; subjects performed
the task in each experiment using all techniques. The or-
der of techniques was randomized for each participant us-
ing a balanced 4x4 latin square. We measured the navigation
time in each trial, defined as the time between acquisition of
the object to lifting the stylus in a 0.5s range of the target

Edge (S) Edge () In(S) in (L After (S) After (L) Sum

B Embedded timeline

M Spatio-temporal

W Purely spatial Loop

Figure 3. Summary of navigation times. Left: Means of navigation time
and 95% confidence intervals for all techniques and experiments. Nav-
igation to the edge, in, and after short (S) and long (L) pauses. Right:
Means of the sum of navigation times for each technique.

time. We analyzed the measurements with a repeated mea-
sures ANOVA using Greenhouse-Geisser correction and, in
case of significance, post-hoc analysis employing paired t-
tests with Bonferroni correction. For nonparametric data, we
used a Friedman test and Wilcoxon signed-rank tests.

28 users (four female) between 21 and 36 years were recruited
from our university’s campus. Free snacks and drinks were
offered during the study and we raffled an Amazon gift card.

Results

Before analyzing the data, we removed two outliers where a
participant misunderstood the task. Figure 3 shows a sum-
mary of the recorded navigation times. When looking at the
sum of navigation times for each technique, subjects were
fastest when using loop (M = 42.1s, SD = 17.2s), fol-
lowed by embedded timeline (M = 50.5s, SD = 18.8s),
spatio-temporal (M = 58.5s, SD = 24.9s) and purely spa-
tial (M = 62s, SD = 23.7s). Differences were strongly
significant between loop and purely spatial (p < .001), and
significant for loop and spatio-temporal (p < .05).

Navigation to the edge of a pause was significantly faster for
the spatio-temporal and loop conditions than for the purely
spatial condition (p < .001). Embedded timeline was only
faster than purely spatial for short pauses (p < .05).

When navigating to a point after a pause the purely spatial,
loop, and embedded timeline conditions were significantly
faster than the spatio-temporal condition (p < .001). Ad-
ditionally, purely spatial and embedded timeline performed
significantly better than loop for long pauses (p < .05).

The data revealed that our participants strongly preferred loop
over all other techniques (p < .001). Also, the embed-
ded timeline technique was preferred over the spatio-temporal
condition (p < .001).

During the interview, when asked if they ever felt that they did
not know where they were in the video with any of the tech-
niques, one participant named loop, two embedded timeline,
four the spatio-temporal and 12 the purely spatial technique,
indicating that, indeed, the purely spatial navigation can pro-
voke a loss of context. When being asked if they could keep
a good overview over what was happening in the video with

any of the techniques, the results were consistent (loop: 17,
embedded timeline: 8, spatio-temporal: 4, purely spatial: 4).

CONCLUSION AND FUTURE WORK

The results indicate that both the spatio-temporal and the
purely spatial conditions do not perform well overall in regard
to pauses. Embedded timeline works well for short pauses
but is problematic in long pauses. Loop seems to be a vi-
able alternative for all tested situations and was the preferred
technique by our users. For future work we plan looking into
techniques that deal with the limitations of the work presented
here. Limitations we identified are overlapping loops or em-
bedded timelines on paths containing frequent pauses and the
added overhead of having to navigate several pauses even
when navigating to a time after all pauses. For the latter, using
a quasimode to dynamically disable the loop would be helpful
to quickly get across pauses. Further work includes a similar
analysis of recurring movements and combining the conclu-
sions with the ones presented here. Also, we plan to further
analyse pauses, especially of varying lengths, and variations
of the techniques presented here, e.g. different visualizations.

ACKNOWLEDGMENTS

This work was partially funded by the German B-IT Foun-
dation and by the German Government through its UMIC
Excellence Cluster for Ultra-High Speed Mobile Informa-
tion and Communication and its HumTec Human Technology
Center at RWTH Aachen University.

REFERENCES
1. Ahlberg, C., and Shneiderman, B. The Alphaslider: A
rapid and compact selector. In Proc. of CHI’'94 (1993).

2. Ayatsuka, Y., Rekimoto, J., and Matsuoka, S. Popup
vernier: a tool for sub-pixel-pitch dragging with smooth
mode transition. In Proc. of UIST’98 (1998).

3. Dragicevic, P, Ramos, G., Bibliowitcz, J.,
Nowrouzezahrai, D., Balakrishnan, R., and Singh, K.
Video browsing by direct manipulation. In Proc. of
CHI’08 (2008).

4. Goldman, D., Gonterman, C., and Curless, B. Video
object annotation, navigation, and composition. In Proc.
of UIST’08 (2008).

5. Hiirst, W., and Go6tz, G. Interface designs for pen-based
mobile video browsing. In Proc. of DIS’08, ACM Press
(2008).

6. Karrer, T., Weiss, M., Lee, E., and Borcers, J. DRAGON:
a direct manipulation interface for frame-accurate
in-scene video navigation. In Proc. of CHI’08 (2008).

7. Kimber, D., Dunnigan, T., Girgensohn, A., Shipman, F.,
Turner, T., and Yang, T. Trailblazing: Video Playback
Control by Direct Object Manipulation. In Proc. of
ICME’07, IEEE (2007).

8. Raskin, J. The humane interface. New directions for
designing interactive systems. Addison-Wesley, 2000.

	Introduction
	Temporal ambiguities in current DMVN systems
	Proposed Solutions
	Loop
	Embedded Timeline

	Navigation around pauses
	Experiment
	Results

	Conclusion and Future Work
	ACKNOWLEDGMENTS
	REFERENCES

