
by
Adrian ISBICEANU

Versioning Control
System for

Graphic Design –
A layered approach

Master’s Thesis
submitted to the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:
Prof. Dr. Jan Borchers

Second examiner:
Dr. Kai Kasugai

Registration date: 22 December 2015
Submission date: 1 August 2016

Eidesstattliche Versicherung

___________________________ ___________________________

Name, Vorname Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige fals che Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________

Ort, Datum Unterschrift

v

Contents

Abstract xv

Acknowledgements xvii

Conventions xix

1 Introduction 1

2 Background and Related Work 7

2.1 Fundamentals of a Version Control System . 7

2.2 Constructing a Version Control System 10

2.3 Glossary of a Version Control System 14

2.4 Creative Tools 17

2.5 History Models 18

2.6 Version control for Graphic Design 22

2.7 Time-Machine computing 26

3 Pilot study 29

vi Contents

3.1 Online questionnaire 29

3.2 Online user observation 34

3.3 User interview 37

3.4 Personas . 39

3.5 Summary . 40

4 Implementation and Design 41

4.1 First Iteration 42

4.1.1 Concept 42

4.1.2 Implementation 42

4.1.3 Evaluation 43

4.2 Second Iteration 45

4.2.1 Concept 45

4.2.2 Implementation 46

4.2.3 Evaluation 49

4.3 Third Iteration 50

4.3.1 Concept 50

4.3.2 Implementation 51

Main screen 51

History Panel 53

Undo Model 56

Branching and Merging 57

Contents vii

Collaboration 59

4.3.3 Evaluation 60

5 Summary and future work 63

5.1 Summary and contributions 63

5.2 Future work 64

A Designer VCS questionnaire 67

B Versioning Control Design Exploration Interview 71

Bibliography 73

Index 75

ix

List of Figures

1.1 Pitfall of using different files to manage the
change history.[Thong] 2

2.1 Linear Graph History 9

2.2 Branches in a Version Control System 9

2.3 Rooted Directed Acyclic Graph 10

2.4 Centralized version control architecture
[Straub] . 11

2.5 Distributed version control architecture
[Straub] . 12

2.6 Common Glossary 17

2.7 Command Pattern 20

2.8 Nested extension to the linear history
[W. Keith Edwards, Takeo Igarashi] 21

2.9 Global history is made up of multiple local
histories [W. Keith Edwards, Takeo Igarashi] 22

2.10 Push-transform moves top Level Location
and transitions it to a new global nesting
[W. Keith Edwards, Takeo Igarashi] 22

2.11 RevG fro a digital sketch 24

x List of Figures

2.12 Construction of the DAG graph and the
RevG from 2 revisions [Chang] 25

2.13 Revision Control System user interface
[Chang] . 26

2.14 Chronicle Timeline user interface [Fitzmaurice] 26

2.15 TimeScape desktop user interface [Rekimoto] 27

3.1 What tools do you use? 30

3.2 On how many projects do you work on a
given day? . 30

3.3 How many files do you have to open on a
given project? 30

3.4 Do you save old versions of the files? 30

3.5 How do you manage old versions? 31

3.6 Are there multiple people working on the
same file? . 31

3.7 On average how much time do you spend on
a project? . 31

3.8 Have you been forced to revert to a previous
version? . 32

3.9 Have you been forced to revert some parts of
the file to a previous version? 32

3.10 What’s the most tedious thing when revert-
ing a file or a part of the file? 32

3.11 On average how many iterations do you
need, to come up with the final design? . . . 33

4.1 Initial Idea for a Version Control for designers 42

List of Figures xi

4.2 First Iteration of the paper prototype 45

4.3 UI of Versioning Control system from the
Video Prototype 47

4.4 Region filter from the Video Prototype 47

4.5 Compare UI from the Video Prototype 48

4.6 UI of Versioning Control System from the fi-
nal iteration 51

4.7 Construction of the global history 53

4.8 Expanding the timeline by scrolling over
groups of versions 55

4.9 The two modes of displaying the timeline;
show preview of the change or only the dif-
ference between it and the previous state . . 55

4.10 Global undo and layer undo to see how the
global timeline is being built please check 4.3.2 57

4.11 Multi-user support through branches 60

xiii

List of Tables

3.1 Designing a Webpage - User Observation . . 37

3.2 Personas . 39

xv

Abstract

Revisionary control systems are common in the world of software development;
sites like GitHub and BitBucket have become the go-to place for any developer to
learn, to explore and to contribute. This is not the case when it comes to design;
normally these kinds of files are harder to manage than text files.

We initiated the study with an analysis of designers’ completing of routine tasks
which led to the observation that, when using Photoshop, they had a strong ten-
dency of organizing their work into groups of layers, and only working on small
parts of the file. We have thus proposed a new Version Control solution, which
tracks the history changes on a layer based system, instead of using the whole doc-
ument history.

With this approach we showcase an innovative model of navigating the history. We
propose and explain filters that increase the speed and enable finding a desired ver-
sion. We present a viable option for live collaboration between designers through
the use of branches and how layer-based merges can also be accomplished. In con-
clusion we propose a solution by integrating the traditional ’undo’ system into the
Version Control System, thus removing the limitations that come with the linear
’undo’ System.

xvii

Acknowledgements

I would like to thank my supervisor Jan-Peter Krämer for all guidance, feedback
and reminding me to stay focused. I have to thank Moritz Wittenhagen for the
initial introduction in the field.

I also wish to thank Mark, Adonis, Simi and Cosmin for all their time spent testing
the different versions of the tool.

xix

Conventions

Throughout this thesis we use the following conventions.

Text conventions

Definitions of technical terms or short excursus are set off
in coloured boxes.

EXCURSUS:
Excursus are detailed discussions of a particular point in
a book, usually in an appendix, or digressions in a writ-
ten text.

Definition:
Excursus

Source code and implementation symbols are written in
typewriter-style text.

myClass

The whole thesis is written in American English.

Download links are set off in blue color.

File: myFilea

ahttp://hci.rwth-aachen.de/public/folder/file number.file

http://hci.rwth-aachen.de/public/folder/file_number.file

1

Chapter 1

Introduction

Revision control systems are common in the world of soft-
ware development. Sites like “ GitHub” and “ BitBucket”
have become the go-to for any developer. This has paved
the way for popular open source projects like node.js and
angular for any programmer to use, contribute or test.
However, something similar does not exist in the world of
design. There are sites like “behance.net” or “dribble.com”,
however, they are used to showcase a portfolio and not to
facilitate learning and collaboration. From our study 3.1 we
found that 90.9% of designers save old versions but only
21% use at least a cloud solution to keep these versions in
sync. Why is it that designers don’t use git to manage their
work?

Revision control
systems are common
in the world of
software
development but
don’t have the same
use in the design
workflow.

Current revision control systems are designed to work on
text files, as they are much easier to work with and are
more common in the workplace. Line differential algo-
rithms have been developed to compare text files and effi-
cient storage solutions have been proposed. Unfortunately,
this was not the case for design tools. Traditionally these
tools used a binary format that makes it difficult to produce
any universal change tracking algorithm. Binary deltas can
be obtained when comparing two files but offer little infor-
mation compared to the line approach.

https://github.com/
https://bitbucket.org/
https://nodejs.org/
https://angularjs.org
https://behance.net
https://dribble.com

2 1 Introduction

Current projects are significantly bigger and no more is
this the case than in the advertising and app industries
[smartinsights]. In recent years new technologies have
emerged, from smartphones to wearables. Users expect
that same great experience regardless of platform. This has
increased the demand for custom design for each platform,
while at the same time keeping the same look and, if possi-
ble, the function has become a much harder task. Managing
the resulting files and changes has become an increasingly
difficult job. How often have we seen the following situa-
tion?

Current design
projects are much
bigger and target

multiple platforms.

Figure 1.1: Pitfall of using different files to manage the
change history.[Thong]

From our interviews we found the lack of a general ver-
sioning control system when it comes to the design files,
designers and manager having to improvise one of the fol-
lowing solutions to secure their work:

• Create separate layers to keep track of different ver-
sions, you can use the same workaround for states if
you are designing an application.

• Assign different file names for each version and use a

3

storage tool like “Dropbox” to save them in the cloud
for backup and collaboration.

• Try to use “Git” or any other text versioning control
system and save the contents as binary.

• Try to learn/utilize a new design tool that offers some
version control.

None of these options result in an easy to follow or useful
workflow for designers. Progress into fixing these issues
have started from the beginning of 2010. We now have tools
like “pixelapse.com”, which takes the saves from “Drop-
box” and tries to present them in an easier way to work
with. While this is a step in the right direction, an inte-
grated tool will make the whole process much easier to fol-
low. Ben Shneiderman has presented this idea in his paper
[Shneiderman], future tools need to “Provide rich history-
keeping”, so users have a record of what they have tried,
compare alternatives and find new inspiration.

Following this idea, systems were proposed that integrated
the versioning control system in the designing software.
They shown the power of having a file history for learning
[Fitzmaurice], working [Chang] and collaboration. These
systems tried to applied the knowledge from the develop-
ment versioning control tools to the world of design. They
simplified some of the vocabulary and adapted operations
to better fit the new environment. We believe future sim-
plification can be applied to lower the learning curve, and
increase adoption.

From our analysis we haven’t found any tool that uses the
fact that users work on a small part of the file and usually
organized they work into layers or groups. All the tools
have treated the history as a change-set of the whole docu-
ment. This idea has been tried for building the undo system
[W. Keith Edwards, Takeo Igarashi] with great results, but
was not applied for the whole versioning control system.

This thesis explores the idea of using layers to track
changes in a design document. Layers and groups are
the traditional way that designers organize their work so
it makes for a natural mapping of grouping changes.

http://www.dropbox.com/
http://www.pixelapse.com/
http://www.dropbox.com/
http://www.dropbox.com/

4 1 Introduction

The most prominent example of a revision control for im-
ages is the one from [Chang]. This system built on GIMP
uses RevG to display the history. While this is a step in
the right direction it doesn’t offer support for layers, which
are critical when doing any mobile application or website
work. Their example focuses more on painting applica-
tions, and offers a simple to use merging system. It also
noted that their system used a manual save approach for
users to create versions or branches. All revisions are pre-
sented in a liniar faction, the user can click an version to ex-
plorer the RevG structure. While an adequate solution for a
small number of changes, our study has shown that design-
ers do on average at least five iterations per file in timespan
of a few weeks. Such navigation will not handler such work
without cutting down on the number of revisions, eliminat-
ing one of the advantages of having a complete history. The
RevG will help in locating all of the changes, but because of
the small number of revisions it will contain a large number
of nodes, again making the selective undo process difficult.

Navigating the
change history has

become a big
problem.

Another interesting paper was [W. Keith Edwards,
Takeo Igarashi]. The authors explore the concept of a multi-
level timeline and how it can be implemented. Their sys-
tem, “Flatland”, had an individual history per item but also
offered a global history. Our system implements a similar
idea but tracks the individual layers instead of items, with
the same challenges as in the paper. For information on the
presented systems please check chapter 2.

Proposed versioning
control system don’t

use layers to
organize the change

history.

Through user interviews and further experimentation, we
have concluded that this layers approach provides for a fa-
miliar and powerful versioning control solution. An auto-
matic save model and an easy to follow branching system
means that designers can experiment without the worry of
losing any work. Integrating the undo system into revi-
sion control system has eliminated some of the problems
associated with a linear undo system, without adding the
complexity of a selective undo system.

In the following chapter we will go over what a revision

5

control is and what creative tools need to provide. We
continue with the recent research in the field of versioning
control systems that assists graphics designers. Chapter 3
presents our user study results from our questionaire, in-
terviews and observations. The following chapter contains
our third iteration on our versioning control system, with
assumption, implementation and evaluation. We end with
a summary of our work and presenting future research top-
ics.

7

Chapter 2

Background and Related
Work

We start by discussing the basics of a versioning control,
how it works, how it can be implemented and what is the
common vocabulary been used. We follow with what are
the requirements of a creative tool, and the need of doc-
ument history. We examine the different ways document
history can be represented and how it affects user interac-
tions.

We continue with the latest research in the world of ver-
sioning control for graphics design, exploring tools bring
concepts from the development tools like git to the world of
design. We finalize by showcasing a new way of thinking
about computing, organizing all information around time
and giving the user his very own ”time machine”.

2.1 Fundamentals of a Version Control
System

Version Control, also known as source control, is a com-
puter software that is used to record, restore and manage
document changes. Version control has been in develop-
ment since the early days of computing, but the origins can

8 2 Background and Related Work

be traced back to the printing industry with the different
revisions and editions of books. Initially, developers used
to save different versions of the files in different folders.
As you can imagine this required great discipline and was
prone to error. The very first version control system was
developed to save these changes automatically for the user.
The program will keep the differences between each ver-
sion in a database. Each version could be recreated by start-
ing from an empty file and iterating through the database,
building the change history step-wise. This was sufficient
for simple projects and can still be found in many modern
operating systems. For instance, Mac OS X still includes
RCS, a popular tool that implemented this idea in its devel-
oper package. [Straub]

Version control is not
a new idea.

We call revision each new version of a set of files. They are
usually identified by a number or a letter code. Example:
“revision1” is the initial state of the file. When we perform
a change, the resulting files are labeled “revision2”. Using
a number or a letter code is sufficient for a centralized ver-
sion control, however, as we will later see, for a distributed
version control we need to use a hash of the revision as an
identifier, in order to avoid any name collisions. This hash
naming can be used in a centralized version control, how-
ever, it is not required.

If we try to graphically represent the revisions, we obtain
a graph or more precisely a directed acyclic graph. The
simplest revision history has a series of changes with no
branches or undo. If we draw this history we obtain a direct
linear graph, with each revision as a node in a straight line.
Arrows connect each revision with the convention that the
arrows points from the older version to the newer version.
This graph can be also thought about as a tree with the root
the oldest version and each node having exactly one child
with the exception of the newest version which we call the
HEAD node.

While a linear history works for simple tasks sometimes we
would need the option to experiment without affecting the
history of the working copy. We want to clone the current

2.1 Fundamentals of a Version Control System 9

Figure 2.1: Linear Graph History

version, perform our changes and record the linear history
of this clone. We want to make a branch.

If we started adding branches to our linear graph it be-
comes a tree or a directed graph. In this graph a revision
can have more than just one child. The HEAD problem
arises; how do we decide what revision is the head revi-
sion. We may tend to make the head the latest revision, but
this will make the head move from one branch to another.
In practice, when a new node is created it is either the new
head node or the new branch. The resulting path from the
root to the HEAD is called the main branch (also known as
master branch or trunk).

Figure 2.2: Branches in a Version Control System

Branches allow us to experiment and once we are pleased
with the results we want to integrate them into our working
copy, i.e. “merge” our changes back to the trunk. Adding
merge to our tree, results in having revisions with more
than one parent. The resulting graph is no longer a tree but
a rooted directed acyclic graph. Rooted because there is al-

10 2 Background and Related Work

ways an oldest revision, directed as each change is ordered
by the time it was created and acyclic as the graph does
not contain any cycles. To simplify our work, we can con-
sider the merges as external to our main branch, creating
a new version without referencing the initial branch from
were that change has come from. The resulting structure is
a tree with merge.

Figure 2.3: Rooted Directed Acyclic Graph

Revision history can
be represent by a

rooted directed
acyclic graph

2.2 Constructing a Version Control Sys-
tem

Let us switch focus and analyze how a version control sys-
tem can handle changes. We first need to define what an
atomic operation is. For an operation to be atomic, the sys-
tem has to remain in a consistent state even if the opera-
tion is interrupted. We want all of our operations that save
changes to the system as well as the create revision to be
atomic, based on the principle take all or leave all.

When it comes to the architecture of a version control sys-
tem we have one of the following two patterns: a central-
ized model or a distributed model.

In a centralized model we have a server that is hosting the

2.2 Constructing a Version Control System 11

repository. The user connects through a client application
to this server and requests for changes to be saved and
downloads any available changes. When it comes to saving
those actual changes the system has 2 options: it can either
send over the whole file or just send over the differences
that need to be applied to the previous version to obtain
the new file. As you can imagine this is easier for a text field
where we send over the changed lines but gets significantly
difficult if we are talking about binary files. As previously
mentioned, all of these operations have to be atomic to pro-
tect the system. The centralized model server does not nec-
essary have to be on another machine, it can run locally as
in the case of RCS that we previously mentioned.

Figure 2.4: Centralized version control architecture
[Straub]

A centralized
architecture is easy
to understand.The distributed model takes a peer-to-peer approach. Here,

all users have a local centralized repository and exchange
patches between them. In this model, it is also possible for
the repository to have more than just a single root. Users
agree which is the original point of the project. While this
model is more complex and harder to understand than the
centralized model it has its advantages.

A distributed
architecture provides
flexibility but at the
cost of being harder
to understand.

As software started to grow, programs started being devel-

12 2 Background and Related Work

Figure 2.5: Distributed version control architecture [Straub]

oped by teams and not by a single programmer. This was
not fully supported by the tools of the time, as each user
had a different version of program on their computer. They
started splitting the program into multiple pieces with each
programmer working on just one piece, later compiling the
pieces into the complete program. While great on paper,
this presented many issues such as the lack of system test-
ing until all pieces were developed, one piece could cause
problems in other pieces and let us not forget deciding how
to split the program in the first place. Developers needed
a way to work with a whole program but at the same time
track the history of changes.

With a centralized approach, developers work on a shared
sever; check a file, making the changes and sending back
the updated file. File locks were implemented to allow ex-
clusive access to one user at a time. Users will lock the file,
will perform their changes on it, complete the tasks, make
sure that the changes will not break the system and unlock

2.2 Constructing a Version Control System 13

the file. While the user works all the other users could only
read that file. It was the job of the user making the change
to ensure that the system worked at the end and that the
file was released. [Pilato]

As software continued to develop, simple file locking was
not enough, users needed a way to work concurrently on
the same file. In this version, each user will work with a
copy of the file from the centralized repository, making the
change and send it to server. The next user will first have
to download the other user’s change, merge it with his ver-
sion, check that it was error free and finally resolve con-
flict on the centralized repository. This conflict will occur
each time more than one user will work concurrently on
the same file.

In the distributed manner, one of the users could set the ini-
tial repository and the other users will just clone that repos-
itory. Each user will work on their local copy and once they
have finished they can invite the other users to download
their changes. Conflicts are resolved in a similar manner,
once you copy over the changes of another user the system
will try to do an automatic merge based on the line of texts.
If this fails, the user is asked to decide what lines should
be included in the merged version to resolve the conflict.
This resolution can be pushed to the other users so only
one user has to resolve the conflict. Unlike the centralized
approached there is no main repository, just a collection of
repositories that contain the full code and history. In prac-
tice, the users set up a remote master where they put the
working copy of the program.

Now that we see both approaches let us do a short compar-
ison of the pros and cons of each method. With the central-
ized version it is easier to see where the code is, it is easier
to learn and understand. But the down side is that it is hard
to adapt for complex projects or big teams as the architec-
ture of the software needs to minimize conflicts. Changes
can disrupt the whole system and can stop the entire de-
velopment process until a fix is issued. The centralized one
is also slow by nature, because all users have to share the
same sever. Connection issues may happen over the net-
work, so any operation, like merge, is slow. In the case of a

14 2 Background and Related Work

sever failure the whole project and history could be lost. So
a mirror system is required. This again adds to the perfor-
mance penalty.

The distributed approach is faster, in general, as each user
works with their local repository. Branches and merges are
done locally before they are pushed to other peers. In the
case of text files, merges are usually easier to perform as
the users work on a line level and not a file level. In the
case of a disk failure only the changes not pushed are lost.
The code and the history can be recovered from any of the
peers. The distributed nature also allows for greater exper-
imentation as users do not have to worry that their incom-
plete changes can harm the program of another user. On
the con side, the distributed system is harder to learn and
understand. The current and most popular distributed ver-
sioning control tool, “Git”, has a lot of confusing command
names that make learning, for first time developers, hard.
To bring some clarity in the next subchapter we will go over
the common vocabulary used in a version control system.

2.3 Glossary of a Version Control System

Initialization creates a new empty repository
Clone creates a new repository from another repository, if
the other repository is empty the operation is similar to ini-
tialization.
Repository the place where the files are stored together
with their change history, usually this is on a server
Version, or revision is a set of changes on the files cur-
rently in the repository; we can also imagine the revision
as a snapshot of the state of the set of files we are tracking
changes on.
Working copy this refers to the local copy of the files from a
repository, any changes we wish to make have to be made
first in the local copy. This sandbox is introduced to pro-
tect the repository from incomplete work and let the user
experiment.
Checkout copying over the files from the remote repository
to the working copy region. The user can select the latest
version or a preceding version.

2.3 Glossary of a Version Control System 15

Export similar with to checkout it copies the file over from
the repository to the working copy region, but it first cre-
ates a clean folder followed by copying the files without
any tracking metadata. It is used to publish the project.
Import copies over a folder tree to the repository, this folder
is not present in the working copy directory.
Commit or check in saving the changes from the working
copy and merging them into the repository.
Change or diff is the delta between two versions of a file,
this change can be lines of texts in some version control sys-
tem
Conflict happens when two or more users edit the same
file in such a way that the system cannot decide how to
merge the resulting file. The user has to manually decide
what goes in the combined file choosing from the list of
changes. Even if the system can automatically merge it is
recommended that users review the merge to make sure
that no bugs were added to the program.
Resolve fixing a conflict (usually manually combining
changes from the conflicting files).
Merge sometimes called integration, as the name suggests,
adding multiple changes to the same file. Merges can hap-
pen when two user work on the same file, when we want
to check in a file or simply transfer over changes from one
branch to another.
Tag or label some changes are more important than others,
we like to give them a name in other to easily refer to them
later; this action is called labeling.
Change list is a set of changes that have been made in a
single commit, a commit can have multiple changes on dif-
ferent files.
Branch sometimes we want to develop a file in an indepen-
dent way, we can do this to experiment with a new feature,
develop a new product or simply to test the current ver-
sion. Branch allow us to do without impacting the main
program, users can still work on the main product, and at
the future time the branches can be merge to transfer over
new features or bug fixes. Branches can be used also to
showcase different versions of the same product.
Trunk or main branch, refers to the main line of develop-
ment without any branches. As an easy way to visualize
one can imagine a line from the initial commit to the head.
Head refers to the latest commit, while each branch can

16 2 Background and Related Work

have a latest commit, head is used to refer to the lasts com-
mit of the trunk or the main branch.
Share sometimes we want to have the same file across mul-
tiple branches and update it once and the update be re-
flected to all branches, that file or folder can be shared
across multiple branches.
Remote are versions of your repository hosted on the inter-
net or on the network. Remotes are required if you want to
collaborated with other users. Permissions can be set on the
remotes so only approved users can changed the remote.
Remotes can be also used for backups, review or testing ar-
eas.
Pull copying changes from one repository to another. In
the case of pull we copy changes from a remote to our local
repository. The changes are then merged with our working
copy.
Push copying changes from one repository to another. In
the case of push, we copy changes from a local repository
to a remote.
Update merges changes from our local repository to our
working copy.
Fetch copying changes from one repository to another, sim-
ilar to pull but doesn’t merge the changes to our work-
ing copy. We could say pull is a fetch followed by an up-
date. We use fetch if we want to put our working copy
changes somewhere else, and not merge them directly with
the changes from a remote repository.
Pull request popularized by GitHub, refers to notifying
someone contributing to the project that your changes have
been pushed to the remote repository and they should re-
view them, discuss any changes with the committer and
finally integrate them in their local repository.[Wingerd]

1

1The current order was chosen instead of the alphabetical approach
as it is more natural. The terms appear in the order that the user
will/should encounter them while working with a version control sys-
tem.

2.4 Creative Tools 17

Figure 2.6: Common Glossary

2.4 Creative Tools

We began our journey into existing literature by exploring
what a design tool needs to facilitate creation. According to
Ben Shneiderman they use the following principles:

• Support exploratory search, in order to innovate and
create something new you need to be aware what
is already up there. While a search engine is good
for text query they struggle when it comes to design
work. Sure Google can search for an image and give
you similar results but ask him for print design from
the 50s for consumer goods and you will get a list
of ads and magazines with some from the 50s. It is
hard to filter by a company or designer. Sites like
“awwwards.com” and “cssdesignaward.com” can be
used to look up modern trends. If you want to look
up old designs your best bet are still art albums and
advertising manuals.

• Enable collaboration, innovation requires collabora-
tion. Special care needs to be taken when it comes to

18 2 Background and Related Work

judging one’s work, as creators may be scared of pos-
sible rejections.

• Provide rich history-keeping, while many people be-
lieve the creation process is unstructured, semi-rigid
approaches have showcased great results. We need to
have a general idea where we are and where we want
to be. Keeping history is important as we can use to
reflect on pass mistakes, try new ideas on old works
or brings olds to works to modern time. History ties
in with the previous 2 principles, peers can review
one’s history, examine his methods and understand
how he devises his invention. Besides the review pro-
cess, training and learning also benefit from history

“Put simply, copying is how we learn. We
can’t introduce anything new until we’re
fluent in the language of our domain, and
we do that through emulation.”

[Ferguson]

• Design with low thresholds, high ceiling and wide
walls, tools need to be design to be easy to grab but
grow as the user skills depend. Some of the most pop-
ular creative tools like Adobe Creative Cloud follow
that principle to heart. Novice users can begin using
After Effects as a simple 2D animation tools, moving
shapes with simple tweens. As the users gets com-
fortable with tools he discovers new options that let
him move past the simple 2D layers. Effects, cam-
eras, filters and many more are introduced that move
the capabilities from just 2D animations to a full mo-
tion graphics suite.[Shneiderman]

2.5 History Models

Applications need to provide methods for undoing user ac-
tions and/or mistakes or warn them when such actions are
unavailable. This has been one of the critical design guid-
ance followed by every interface designer. One way this
can be accomplish is with the use of the Command design

2.5 History Models 19

pattern. To take an example let us consider a basic 2D draw-
ing application that allows the user to draw and transform
(move, resize, and change color) circles on a canvas. We can
design a Circle class with the following properties: x and y
holding the position properties of the center of the circle,
color representing the color of the circle and r, the radius of
the circle. We can have a method setColor that changes the
color of the circle, a setRadius that changes the size of the
circle and of course a move method to position the circle.
We also need a draw method that accepts a canvas objects
that draws our circle.

A simple application can create a new circle object when
the user creates a new circle and adds it to the display list
followed by a clearing of the canvas and redrawing of the
display list. Any changes that are performed on the circle
object are followed by a clearing of the canvas and a re-
drawing of the display list. While stratifying our initial re-
quirements this application doesn’t provide an undo mech-
anism. A naive approach will be to save the state of each
display list state and reuse that when undoing. While it
will work, it doesn’t scale up plus it ignores the decencies
of the states, each state is derived from a previous state plus
a change by the user. This is where the Command pattern
comes in.

Instead of calling directly transformations on our circle ob-
jects we encapsulate them into objects that we call com-
mands. Using an object-oriented approach, we can create a
Command interface with a method execute having an actor
parameter and transform object parameter. From this inter-
face we can write the following classes: Move (that takes
a circle as a parameter and a transform object having the x
and y values for our new location), Color (takes a circle as
parameter and transform object with the color code), Resize
(takes a circle as parameter and a transform object having a
positive number representing the new radius of the circle).
Whit this transform classes we can represent all of our cir-
cle transformation actions. Each command objects maps a
user action, thus forming the editing history. These objects
are stored in a list where each new user action adds a new
object to the list. The current state of the circle can be recre-
ated starting with an initial circle and iterating through the

20 2 Background and Related Work

list.

Undoing can be accomplished by removing the last element
from the list and reiterating over the list. An optimization
can be added, if we extend the Command interface to sup-
port an undo method. Then instead of reiterating over the
whole list we can just run the undo method on the last ob-
ject from the list. A current pointer can be added to facili-
tate undo and redo actions. If we graphically represent the
history list, we obtain a simple line.[Nystrom]

Figure 2.7: Command Pattern

While sufficient for most application this model presents
some serious drawbacks that come into light when work-
ing with designing applications. One such limitation is
the lack of selective undo, let us assume we don’t want
to undo the last command but just its parent, the next-to-
last command. With the current linear model, we cannot.
And once we undo a command and start adding new com-
mands we lose the possibility to the redo losing the initial
command. This problem hurts experimentation, as users
know they can lose commands. It doesn’t help that most
program store history in memory and once a file is writ-
ten and closed the history is lost. Improvements have been
made over the years, some programs showcase the history
in a panel, where users can deselect action they don’t want
to be executed. While this model is more suitable for vector
graphics applications, bitmap implementations have been
suggested, see Aquamarime [Le].

A non-linear model can solve these issues, by allowing
commands to have one or more children, the history can
be branched, edited and merged without losing any of the
commands. While powerful, this model is much harder to
understand by the user and also presents problems when it
comes to an efficient implementation.

2.5 History Models 21

Figure 2.8: Nested extension to the linear history [W. Keith
Edwards, Takeo Igarashi]

As an example let us consider Flatland application from
[W. Keith Edwards, Takeo Igarashi] paper. Flatland is a
whiteboard application where user can draw segments and
select a behavior. Segments can be made to act like an un-
ordered list, a map etc. Like any interactive application it
needs a way to let the user undo or redo an operation. But
what makes Flatland special is that action one stroke can
affect another stroke. So a simple linear history will not
work as it will allow the user to scroll to invalid states. The
first solution that authors proposed is a nested timeline that
puts on stack operations that have a causality, thus elimi-
nating any invalid state, as the timeline will undo the whole
stack to get a new state. Next they wanted to support a lo-
cal timeline for each segment so that the users can perform
a local undo. A first solution was to have a have a list of
the complete history, each one for one segment. The global
history will be built by sticking tougher all the local histo-
ries. This works fine as long as one segment change doesn’t
affect another segment. However, in Flatland this is not the
case. The solution follows the previous idea, in the global
timeline we need to nest actions that started with the same
cause, doing so avoids any invalid states. The local timeline
is preserved and all actions can be undone in a predictable
fashion.

22 2 Background and Related Work

Figure 2.9: Global history is made up of multiple local his-
tories [W. Keith Edwards, Takeo Igarashi]

Figure 2.10: Push-transform moves top Level Location and
transitions it to a new global nesting [W. Keith Edwards,
Takeo Igarashi]

2.6 Version control for Graphic Design

We continue presenting some of the leading research in the
field. First is the system of [Chang] built on GIMP it of-

2.6 Version control for Graphic Design 23

fers an efficient versioning control system for painting and
sketching applications. The system uses a DAG internally
to represent the editing actions, each node mapping an edit-
ing operation. This graph is then processed to display a
RevG graph so the user can easily navigate with it. The
RevG graph is generated from DAG graph generating a
preview of the set action. The system implements the tra-
ditional version control vocabulary, users manually com-
mit changes, make branches etc. The system comes with a
simple use merging system that allows users to select what
should be merged. A zoom-in exploration highlight the
underlining changes, allows the user to undo actions se-
lectively. Playback and compare actions are added to com-
plete the tool. The evaluation study found that users can
perform the basic revision control action with little training.
Problems arose while navigating the RevG graph, while
users like the final detail view, they sometimes got lots lost
in the details.

Problems also arose of when actions are needed to be dis-
played, to support selective undo the system doesn’t dis-
play actions in a temporal manner. The replay function
was found to be very useful especially for stroke play-
back, as it is difficult from a flat image to deduce how it
was drawn. Performance of the app is also impressive, the
DAG is built on the fly and commits only save the different
changes notes, a more efficient storing option than the bi-
nary deltas. From our user observation (See more in chap-
ter 3) we found that most users when working on designing
applications or web sites use layers to organize informa-
tion. Work chunks are usually performed on a single layer
or layered group. The previous system completely ignores
this fact treating the whole document as a huge canvas. Us-
ing this information, we can more efficiently organize the
document edit history. Another limitation of the system is
the lack of powerful search options; this becomes a serious
problem when working with large files that present a huge
change history making the current navigation unsuitable.
The system in the current form doesn’t support multiple
users but this can be added as the underling framework
supports it.

The second system we are going to have a look at is Chron-

24 2 Background and Related Work

Figure 2.11: RevG fro a digital sketch
[Chang]

icle. Chronicle records a video of the hole edit history and
provides information to navigate this history. The main fo-
cus here is learning. Users can filter a particular area of
interest and play the history in order to see the workflow.
Settings can be reviewed and copied over. Chronicle offers
powerful filtering options, users can filter changes that in-
clude an area, a tool and like our application a layer. Multi-
user support is also enabled, users can see changes of a
particular author. Annotations offer even more informa-
tion; users can mark specific parts of the history to give
hints. While not a version control tool, Chronicle show-

2.6 Version control for Graphic Design 25

Figure 2.12: Construction of the DAG graph and the RevG
from 2 revisions [Chang]

cases one of the most important benefits of edit history;
training. New users can be trained in the tool with mini-
mal effort by the original authors. Furthermore, this tool
facilitates the integration of new team members in a project.
The filter mechanism highlights the importance of navi-
gation, without such a mechanism history loses its ben-
efits, as it too hard to use. Unfortunately, the history is
only recorded as a video and a series of events and doesn’t
provide any of the features a version control system like
branching. This is understood as it can be more easily im-
plemented on existing tools with little to no changes of the
architecture.[Fitzmaurice]

26 2 Background and Related Work

Figure 2.13: Revision Control System user interface
[Chang]

Figure 2.14: Chronicle Timeline user interface [Fitzmau-
rice]

2.7 Time-Machine computing

The final system that we are going to analyze is the one de-
scribed in the Time-Machine computing. On this computer
all machine states are archived, users can travel to any pre-
vious machine as if having a “time machine”. This inter-
esting organization method limits the need for a folder to
organize information. It is important to note that actions
are permanently archived, like create a file send or receive
an email, etc. This archived function is implemented at the
operating system level. This time metaphor allows the user
to organize the desktop like a real-life desktop. You cre-
ate your file work on it and once you are done you simply
delete it from your desktop. The file is saved, you can sim-

2.7 Time-Machine computing 27

ply travel in time and see that file on your desktop.

Navigation in this system presents some unique challenges,
the users cannot always remember the exact time. One op-
tion is to provide navigation by time based on some events,
like when I started project A, or when I received an email
from Bob. A playback option is also supported to allow for
browsing of the history of the machine. Probably the most
interesting way to navigate in the past is through the use
of post-it notes that allow the user to mark specific events.
As a final display option the system also provides a calen-
dar view. This is useful if the user wants to have a familiar
overview.

The initial version of this system had the history read only.
This was quickly challenge by the user who wanted to go
back and change past event, this again highlights need for
a branching version control system.[Rekimoto]

Figure 2.15: TimeScape desktop user interface [Rekimoto]

29

Chapter 3

Pilot study

In the last chapter we have explored what a version control
is and what researchers have done to bring it to the graphic
designers. In this chapter we will look at what a designer
expects from a version control system and why they have
not adapted the traditional solutions from the development
work to their workflow.

3.1 Online questionnaire

We began our mission by creating an online questioner and
distributing it on designer forums and designer groups on
Facebook. We have chosen this option instead of going di-
rectly to their workplace in order to get a more casual an-
swer regarding their experience. We asked them 11 ques-
tions and received a total of 33 answers.

Below we have a summary of their answers:

30 3 Pilot study

Figure 3.1: What tools do you use?

Figure 3.2: On how many projects do you work on a given
day?

Figure 3.3: How many files do you have to open on a given
project?

Figure 3.4: Do you save old versions of the files?

3.1 Online questionnaire 31

Figure 3.5: How do you manage old versions?

Figure 3.6: Are there multiple people working on the same
file?

Figure 3.7: On average how much time do you spend on a
project?

32 3 Pilot study

Figure 3.8: Have you been forced to revert to a previous
version?

Figure 3.9: Have you been forced to revert some parts of
the file to a previous version?

Figure 3.10: What’s the most tedious thing when reverting
a file or a part of the file?

3.1 Online questionnaire 33

Figure 3.11: On average how many iterations do you need,
to come up with the final design?

Bellow we draw some conclusions from the questioner:

• Any tool that we want, design should work in a sim-
ilar manner to the tools the designers are already us-
ing, to make learning as easy as possible, ideally it
should be an extension to their tool. In the case of
Photoshop, we can image it as a separated panel.

• An interesting result we have is for the second an-
swer. While it is clear that some designers work only
on one project a day some of them work on multi-
ple projects. We assume that the ones that work on
multiple projects must work in a design studio, where
more projects are being developed simultaneously.

• It is clear that designers work on multiple files at the
same time, so extra attention has to be given to navi-
gation and management of files. The system will need
to make sure that the designers do not get lost in the
multitude of files.

• Saving earlier versions of the design is a common
practice, hinting at the importance of the history.

34 3 Pilot study

• Designers do not use the traditional versioning con-
trol tools. This is again will be explorer in our inter-
view section.

• Simultaneous editing does not seem to be such a
needed feature. Most designers are the sole author
of the project. We suspect this as a side effect of the
lack of tooling support or because designers want to
do one thing in a project.

• Designer do many iterations before submitting a de-
sign, any tools need to be designed to handle a large
number of changes, over 10 versions for each file.

• Reverting to a previous stage is something that hap-
pens occasionally on a project. The more interesting
part, we think, is the partial revert as this is something
we suspect more common. At the moment the most
common way to revert is with the undo command but
this is linear and presents the problems we have dis-
cussed in 2. For bigger reverts we assume they are
using an older version of a file copying over objects
to the current version and manually merging them.

• Keeping track of the files seems to be the biggest issue
at the moment. People are having problems organiz-
ing the history. The locations of the different versions
come from this problem and limits the use of a ver-
sion control. Useful would be having a complete his-
tory if you cannot find something. The merging issue
is expected because of the nature of graphic projects.
We suspect that most designers have not used the
tools described in 2.

3.2 Online user observation

In the next stage of our study we looked online on how
people work. We have chosen 8 videos from Youtube of
how people design a webpage. We have gone for this ap-
proach and not an onsite observation in order to minimize
the bias that could occur during the observation while do-
ing their work. While this bias is also present when some-
one is recording their work we think it is smaller as the

http://www.youtube.com/

3.2 Online user observation 35

people that record such videos usually do them to teach
other people how to do the same or want to showcase their
skills. Last reason for choosing this approach is that it
makes reviewing of the observation much easier, as other
researchers can re-watch the same videos.

Video URL Uses
Layers

Organizes
Layers

Notes

http:
//y2u.be/
xC01YXtpvwU

YES YES Design starts from top to
bottom, does an organi-
zation of the design as
it works. Does a fi-
nal cleanup of the lay-
ers at the end once he
is pleased with the solu-
tion. Copies over objects
to reused them. Uses a
grid layout when design-
ing. Work is grouped on
small region of the file

http:
//y2u.be/
HpvTJmQYa9c

YES YES Uses screenshot as guides.
Design from top to bot-
tom. Starts with naviga-
tion Reuses common de-
sign assets like social net-
work icons. Uses a grid
layout to organize infor-
mation. New objects are
created from duplicating
old objects and changing
them. Doing so preserves
the style.
Work is grouped on small
region of the file Experi-
mentation and revert with
multiple styles.

http:
//y2u.be/
2k-052E5_
BI

YES NO Items are done in Illustra-
tor and brought into Pho-
toshop for final assembly.
Design from top to bot-
tom. Grid used to layout
items.

http://y2u.be/xC01YXtpvwU
http://y2u.be/xC01YXtpvwU
http://y2u.be/xC01YXtpvwU
http://y2u.be/HpvTJmQYa9c
http://y2u.be/HpvTJmQYa9c
http://y2u.be/HpvTJmQYa9c
http://y2u.be/2k-052E5_BI
http://y2u.be/2k-052E5_BI
http://y2u.be/2k-052E5_BI
http://y2u.be/2k-052E5_BI

36 3 Pilot study

http:
//y2u.be/
u23sN24fMJs

YES YES Designs start with back-
ground, then moves from
top to bottom Assets are
prepared in a separate
file Experimentation takes
part all over the project not
only in one zone Columns
are used to layout the con-
tent. Groups of objects are
created by duplicating an
existing object. Users uses
the History Panel. Design
from left to right.

http:
//y2u.be/
3sCshDAqINI

YES YES Old site used as start-
ing point and for reusing
of common assets such
as the logo. Grid used
to organize content. As-
sets are preprocess and
assembled in Photoshop.
Design from top to bot-
tom. Application state are
represented with layers.
Groups of items are cre-
ating by duplicating the
starting item and modify-
ing the content.

http:
//y2u.be/
HRPE-5RarFo

YES NO Design from top to bottom
Uses grid to organize con-
tent.

http:
//y2u.be/
V0iTsH6CjKc

YES YES Uses grid to layout de-
sign Design from top to
bottom Reuses a rectangu-
lar as spacer to space out
items Layers used to mar-
ket different states of the
application

http://y2u.be/u23sN24fMJs
http://y2u.be/u23sN24fMJs
http://y2u.be/u23sN24fMJs
http://y2u.be/3sCshDAqINI
http://y2u.be/3sCshDAqINI
http://y2u.be/3sCshDAqINI
http://y2u.be/HRPE-5RarFo
http://y2u.be/HRPE-5RarFo
http://y2u.be/HRPE-5RarFo
http://y2u.be/V0iTsH6CjKc
http://y2u.be/V0iTsH6CjKc
http://y2u.be/V0iTsH6CjKc

3.3 User interview 37

http:
//y2u.be/
iGdS1CZ5bUs

YES YES Design starts with logo
Design from top to bottom
Assets are prepared in
separate files Content
organized by columns
Groups of items created
by cloning States repre-
sented with layers Layer
cleanup at the end

Table 3.1: Designing a Webpage - User Observation

We considered a user organized if he renames the layers,
groups and moves them into folders.

From these 8 examples we can conclude that users: use
layers to organized content, the design starts from top to
bottom, grids are used to position items. Work consists of
many chumps; each chump is focused only on a small por-
tion of the design. Each chump has around 1-3 layers. Most
experimentation focus on fonts, colors and positioning.

3.3 User interview

We have interviewed 2 users. Please refer to our annex for
the interview questions: one user had over 10 years’ experi-
ence using Photoshop and is the lead designer of a startup
and the other is an intermediary user with 3 years’ experi-
ence working as a freelancer. The daily routine of a free-
lancer is different from a full time employee as he also has
to manage the business aspects of the job. From our inter-
view we found he usually works on 2 projects a day and,
sometimes, has to do small updates on client requests. In
case of the lead designer, he has to collaborate at least with
another person on a project. Tasks are usually split by ex-
pertise, some artist focus more on branding and logo cre-
ations while other focus more on user interface. As a gen-
eral rule there is someone that assembles the whole work
and presents it to the account. Review meetings are held

http://y2u.be/iGdS1CZ5bUs
http://y2u.be/iGdS1CZ5bUs
http://y2u.be/iGdS1CZ5bUs

38 3 Pilot study

with the account manager and the whole design team plus
representatives from the development group. It is not un-
common in a review meeting for an alternative design or
an older version to be present, as clients like to experiment
before going for an idea. For team of designers having au-
tomatic file synchronization is the most important feature,
currently this is accomplished through a cloud solution.
When asked about versioning they have a daily backup so-
lution. They perform manual saves on important events
that they may need referencing later. This is something sim-
ilar we have also observed with the freelancer. He will save
a new copy of the file and name it for that even. Unlike the
team he uses Dropbox to keep his file saved. Both user’s
express frustration with organizing the files, the guy work-
ing in the agency details their naming structure and also
the struggling of enforcing it. We asked if they have multi-
ple users working on the same file. And he said yes but not
at the same time. When ask why, he confirms it is hard to
keep track of the changes. They prefer to work on separate
files, create smart objects and merge them in the complete
file. Later changes can be done by just updating the smart
objects. The intermediary users did not mention the smart
objects but he said he keeps layers around. This behavior
can also be observed in Brad2015’s interview. Going deeper
in the review of the design process we found that the free-
lancer used a notebook to take notes while lead designer
uses an online tool to mark a jpg of the design. Asked
how they organized their work, they answered with layers,
groups and smart objects. We asked the more experienced
users if they heard of version control, and he confirm it, we
asked why they do not use git. His replay was it is too slow
for our job. We asked what are his pains with the current
cloud solution that host the files. Restoring a version we
need only a part of it, at the moment we need to duplicate
the file, restore the old version open the two files and man-
ually combine them, was his answer. The freelancer said
locating the exact file, Dropbox does not really have a fast
way to search old versions. I wish I could tag them.

We revisited the same users with our prototypes for feed-
back. Please refer to the evaluation phase for their answers.

http://www.dropbox.com/
http://www.dropbox.com/

3.4 Personas 39

Picture and Name Details Goal

[Pexels, a] John

Role: designer
Background: 28
years old, bachelor
in Fine Arts
Uses: Photoshop, Il-
lustrator
John has to integrate
other team mem-
bers’ work. Primary
task is to design UIs
for web apps.

“I want my work
to have meaning”

[Pexels, b] Suzy

Role: freelance de-
signer
Background: 26
years old, self-
thought
Uses: Photoshop,
Illustrator, Outlook,
FreshBook Suzy
wants her design
files to be organized.
Wants to impress
her clients.

“I want to fin-
ish my work be-
fore 5pm so I can
have more time
for myself”

Table 3.2: Personas

3.4 Personas

With the information gathered we started doing our per-
sonas. We split our users into two categories depending
on their job status: freelancer or full time employee. We
consider this an important factor of how versioning con-
trol system will play out. For freelancer’s history is more
important while a team member may value collaboration
more.

Bellow we have our two personas:

40 3 Pilot study

3.5 Summary

We conclude by presenting a list of some the feature that
any version control needs to have to be feasible in the de-
sign workflow:

• Quick saving of changes

• Fast and easy navigation and locating a version

• Easy comparison between version

• Low learning curve and if possible be integrated the
in the tool that design is being created

• Low “initialization” cost, setting up a new project
should be as easy as creating a new folder

• Automatic saving, while from our interviews we
found that users want manual save the practice says
that this not always what is need it. A tag system we
believe better suits the user plus also eliminates the
problem of finding good names for each version

• As a consequence of automatic save we believe that
the undo system should be integrated in the version
control system

• Easy automatic merge operations with the option of
creating a manual merge

• Facilitate collaboration and offer real-time multiple
user editing

• Powerful filters to identify changes made by a
specific user, on a specific zone and a specific
group/layer/object

41

Chapter 4

Implementation and
Design

The goal of this thesis is to explore if a version control tool
that tracks changes on a layers basic is a valuable approach.
We want to design a tool that takes the ideas from 2.6 and
adds in the insights we observed from our pilot study. We
start by going over our initial design assumption, that de-
signers want an easy to setup and use versioning control
system. From that we develop a paper prototype inspired
by current systems, we did a review of that system with the
user, going over the actions that arouse in a typical work-
place, we follow by a video prototype, to see the user in-
terface and user interactions in action. This prototype was
again reviewed and feedback collected. We complete by
showcase a 3rd prototype that descripts the entire set of ac-
tions. This last prototype we used in our final user eval-
uation. Each of the 3 prototypes were evaluated and their
feedback was incorporated in the following prototypes, fol-
lowing the classic DIA cycle.

42 4 Implementation and Design

4.1 First Iteration

4.1.1 Concept

Based on our user study results3, we decided to build a tool
that was integrated in the current workflow and used the
history from a cloud solution such as Dropbox and displays
them in an easy to manage solution. We took inspiration
from tools already on the market such as pixelapse.com and
combined it with the best user interface guide from [Nor-
man] and [Lidwell] to eliminate some of the shortcomings,
such as the lack of branching, notations and multi user sup-
port. In this initial version we will explore the design re-
quirements testing the users needs in the current workflow.

For displaying the history, we selected a tree structure as
it offers more flexibility and it is a better mapping for
branches. Interactions where design for an external tool,
the user will occasional used this to locate the desire ver-
sions, download it and merge it with the current version.

4.1.2 Implementation

Figure 4.1: Initial Idea for a Version Control for designers

In this first prototype the history is displayed as a tree. Each
save state is represented by a node in this tree, bellow we

http://www.dropbox.com/
http://www.pixelapse.com /

4.1 First Iteration 43

will see the author of that state and a list of tags. The tag
list supports multiple colors to make identification much
easier. The tree is displayed horizontally from left to right,
the root being on the left side. We chose this approach and
not a vertical display as we expect users to have multiple
branches and it is a more natural fit for a timeline. Having
a horizontal timeline also allows us to display more states
as all modern monitors are in an aspect ratio of 16x9 or 21x9
[Steam].

We decided to not include a naming option to each state
and instead used a tagging system, as it is very hard to pro-
duce manifold names for each version. With this system
we allow the flexibility of having names and reusing them
without being forced to name each state.

All states are grouped by the creation date from left to right,
from our interviews with the designers they suggested that
they saved around 5-7 versions a day.

Setup of this system, was just creating a new project and
selecting a folder from the cloud service as the root of that
project. Each individual design file will then be shown and
the user could click a file to see his history.

4.1.3 Evaluation

We presented the prototype to two of our designers, one is
a freelancer designer with more than five-year experience
working with small clients and the other is a lead designer
at a digital agency.

Initial feedback was encouraging the like, the idea of using
the Dropbox history to display the file history, as this will
not have major changes to their workflow. They presented
some doubts of how branches can be shown when dealing
with a Dropbox history. The history is created from any
saved version of a file in a Dropbox folder, they expressed
some worries as sometimes they save incomplete work or
other times they forget to save complete states. They pre-
ferred the tagging system as opposed to a traditional nam-

http://www.dropbox.com/
http://www.dropbox.com/
http://www.dropbox.com/

44 4 Implementation and Design

ing system, they will like the system to have an option to
display all tags per projects and of course filtering by mul-
tiple tags.

We tested the system with a paper prototype, having
around twenty saved states each represented by a piece of
paper. Even with this small number of saves, we found that
navigation is tricky. We are thinking of implementing some
keyboard shortcuts to move faster through the history. Ar-
row navigation is a natural fit here, users can use the four
arrows keys to move up, down, left, and right. Home will
go to the first version, and holding the shift key with one
of the keys will move ten saves, this is a familiar concept
from the Adobe Creative Suite. The number of saves be-
ing displayed at once can also be a problem, while it is nice
to see more “work”, it is however harder to understand.
Using previous research about the user’s working mem-
ory [Kuorelahti] we are thinking of limiting the display to
around ten saves per view.

Another interesting interaction we observed is that the user
expects to swipe through the history, pan around similar to
any touch interface.

Users asked what happens when they download their his-
tory, how do they restore, and how is this reflected in the
system. All of these actions have to be manually performed
by the users, when asked how they perfum them, they said
they copy over in the current file stuff they need and follow
by “integrating” them in the current design. This “integra-
tion” is usually positioning, scaling and some grouping

http://www.adobe.com/creativecloud.html

4.2 Second Iteration 45

Figure 4.2: First Iteration of the paper prototype

4.2 Second Iteration

4.2.1 Concept

For our second iteration we decided to embed the exter-
nal tool directly into a design authoring environment like
Photoshop, while this approach will limit the number of
supported formats, each authoring environment needing
a separated plugin, we believe the positives outweigh the
negatives. One advance of this approach is that users don’t
need any extra setup process, creating a file automatically
will setup the versioning control environment, restoring
can be done by simply selecting a version from the history,
no need to download and override the current file. We also
changed how versions are committed, the system has an
automatic save option. We implemented some filters to im-
prove navigation, the users can filter changes by users, re-
gion and tool that created them. Last thing we considered
is a replay function, so the users can see how the design
progressed. For this replay function we also implemented
a calendar view so the changes can be viewed on a daily
range. For this iteration we implemented a paper proto-
type but also a video prototype so we can get a better feel
of how the system will function.

46 4 Implementation and Design

4.2.2 Implementation

One important design decision we had to consider is when
we should save the revision to our history. Should we save
it when the user saves the file or should we implement an
automatically save system. We asked our users what they
prefer and most said manual save. While we believe that all
users want manual control over their tool, workplace expe-
rience has proven this to be not that case. As most common
productivity tools (like Microsoft Office, Adobe Suite) offer
auto save features plus a method to recover files if the app
crashes, we believe there is a place for an automatic sys-
tem. By eliminating the need to commit in the system we
will also bring the learning curve down, this is one of the
main reasons that has made version control tools adoption
slow. Going with this automatic save system we need to
decide what we save and when we save. A simple solution
is save every minute and ignore the changes the versions
that have no new changes. While simple to understand this
model may have a different number of changes per version.
A version can have just one change while another a com-
plete set. To eliminate any confusion, the system saves on
each new change. This approach is easy to understand by
the user but creates a new problem, saving on every change
creates a complete history but a very long history. Thus fil-
tering and grouping is key to facilitate navigation. By de-
fault, the system always showcases the previous version so
the users know the action of an undo command. After that
it displays the version with the last minute of work, last
hour of work until the beginning of the day followed by
a day grouping. Click on a group of items maximizes the
navigation to show all the corresponding versions, so click-
ing a day will show a list of groups by hours, hours a list of
groups by minutes until we get to the individual version.
All changes are saved as the user works, so he can see iter-
atively how the history is being built. If volume of works
is not sufficient to be grouped by hours they are shown in
a list. The arrows between history notes are not shown if
no branch is presented, this makes for a cleaner look of the
navigation.

In any stage of this exploration we can use our region filter

http://microsoft.office.com/
http://adobe.com/creativecloud.html/

4.2 Second Iteration 47

Figure 4.3: UI of Versioning Control system from the Video
Prototype

to remove any versions that don’t have any changes in that
region. This filter result can be further refined by showing
only changes made by a specific user or tool. If we consider
the time of change as a filter the system has a total of 4 four
classes of filters to narrow down the desired version.

Figure 4.4: Region filter from the Video Prototype

48 4 Implementation and Design

In our video prototype we implemented a playback feature,
the user can play forward and backwards through the nav-
igation. Playback speed is one change per three seconds,
and can be sped up by holding the shift key. To produce
a smooth motion, animations are automatically created be-
tween two consecutive versions. Thus an easy to follow
action for the user is achieved.

We implemented a compare feature so the user can com-
pare different versions, the system allows for scaling and
panning when using the compare tool. And to highlight
differences between two versions, the system fades to grey
in the common parts leaving only the difference in color.

Figure 4.5: Compare UI from the Video Prototype

To create a new branch, users need to go back to a previous
version and start making a change, the system will then
create a branch for him.

Mergers are done in a similar manner as the system de-
scribed in 2.6, with users selecting regions from different
versions that they want present in the resulting, merged,
version.

The calendar view show a bird’s eye view over the working
month, a user can select a day or a range and in the left side

4.2 Second Iteration 49

a video will be generated of all work that has been done.
The use case for such a feature is to swiftly remind the user
what he was working on. This can happen for a number
of reasons as designers are moved from one project to an-
other or simply go on a holiday. Another use case for these
features is as a learning tool similar to what was presented
in [Fitzmaurice] or as an estimate assessment, project man-
agers and designers can look over the history to estimate
how much time a similar change may take.

4.2.3 Evaluation

4.2.3 Evaluation We again presented the prototype to two of
our designers, this time first the paper prototype followed
by the video version. The initial feedback was encourag-
ing they welcome the move as a plugin integrated directly
into the design tool. The automatic saving features pre-
sented some doubts, “But I want to choose when I save”,
tags will give some control back, and as they get familiar
with the tools the instinct of always saving not to lose work
will disappear. The freelancer who had more experience
working with google docs welcomed the change. One im-
portant question that arose what happens with the undo
model. What happens if the designer undoes a change and
then continues working? Will that change be presented in
the history or be skipped completely? Our initial assump-
tions were for it to be removed from the history as to keep
the history as light as possible. But after further discussions
we concluded that this information could be useful further
down the line, and could remove one of the drawbacks of
having a linear undo history model, that after undoing a
change and adding new changes the initial action is lost.
We discuss if this undo changes should be kept forever in
the history or cleared on exiting the application, we con-
cluded that it will be best they are kept.

The filters were welcome, the region filter being considered
the most useful of the four, however, after further discus-
sion we observed that designers like to organize an “object”
on a layer or a folder, while we can draw a region over that
object to see the history, it will have to be included on all

http://apps.google.com/

50 4 Implementation and Design

the objects that overlap that region. So it was concluded
that filtering based on “object” will be of great use.

The Comparison Tool was also welcomed, suggestions in-
cluded the ability to present multiple views of the history,
so the user can work while viewing a previous version of
the file or a different branch. The playback function while
fun to use, will probably not be used that often, however, it
maybe be useful as an educational tool. The same skeptic
feedback regarding the calendar view, is nice to have but
they don’t consider using it daily. Problems were observed
also with the merge tool, which follows a similar design to
one from [Chang], selecting just the region to be merged is
not that easy to use. We suspect the problem is visibility,
so user training is necessary before this feature can be used
with confidence. We also need to represent this merge bet-
ter in the history navigation, currently this is represented
as two arrows intersecting into a new history node.

4.3 Third Iteration

4.3.1 Concept

For our final iteration, we decided to merge the undo model
with the history model. Changes are now tracked on a layer
basics and not on a global file level. The “global” timeline is
composed of a multiple layer timeline, following a similar
pattern described in [W. Keith Edwards, Takeo Igarashi]. If
a user undoes an action, it will still presented in history as a
separated branch, drawn with a semitransparent option to
indicate it was generated from an undo action. We updated
the layer view to include a button to filter by layer option.
We removed the calendar view to streamline the naviga-
tion, and update how the history items are been grouped.
We will change the previous click-to-expanded mechanics
with a scroll to review more changes. We also consider
making the versioning control panel a detachable panel, to
facilitate multi display workplaces, a common account ac-
cording to our designers.

4.3 Third Iteration 51

4.3.2 Implementation

For this last iteration we implemented only high quality
screenshots of the whole system actions. We opted for this
option in order to represent all the system actions. We will
continue by presenting each of this screen and explaining
the changes that we did compared to the previous itera-
tions.

Main screen

Figure 4.6: UI of Versioning Control System from the final
iteration

Starting with the main UI, we made the panel resizable, so
that the users can decide how many branches they wish to
show. We removed the calendar view, added on the right
side a preview of all the tags in the projects. They are dis-
played as small colorful rectangles, if the user over one of
this tags the name of the tags name appears. Users can add
a new tag to a version by simply highlighting a node and
choosing “Add New Tag”. Below that we add it to the list
of users who had worked or are working currently on these
projects. By default, the first user shown is the current user,
followed by the collaborators. To identify changes easily

52 4 Implementation and Design

each user is assigned a color. As soon as a new user starts
working on the file his changes are highlighted with that
color. For information on multiple users please check 4.3.2.

As previously mentioned undo operations are now saved
and displayed as faded notes, the users can still select this
node to see the version and even continue working. For
information on undo please check 4.3.2.

We updated the layers view to add a filter option, repre-
sented by a clock icon. By default, the system shows the
complete history, the presents of the clock icon means the
system shows history nodes that contain changes on that
layer. Clicking on any layer turns off the clock icon from the
other layers, filtering the history to only changes that are
contained within that layer. User can select multiple lay-
ers to show only changes that affect those layers. If the re-
verse/opposite is required, then ALT should be held while
pressing the icon, this will turn off the icon for the cur-
rent layer or folder of layer and not update the icon of the
other layers. We decided to go with this approach as show-
ing changes for one layer is a more common use case than
showing changes that exclude a layer. A global clock icon is
present on top of the layer panel, this allows for easy reset
of the layer filtering system so the users can easy go back to
full history with one click. The layer filter can be combine
with the region and tool filter to provide even finer control.

To avoid a large number of history nodes being shown the
system automatically groups them by hour and day. To ex-
plore this grouping the user needs to hover over the node
and scroll to reveal the content. More information about
the history panel can be found in the following subsection
4.3.2.

Now that we have a high overview of how the whole sys-
tem works in the following subsection we go over in detail
of each component of the system, how it works and how it
was designed to help the user use the design history.

4.3 Third Iteration 53

History Panel

In this section we go over the details of how the history
panel works, how the history is constructed and what
changes have been done following the previous iteration.

We begin with how the history of the file is being con-
ducted. As we mention in the beginning we removed the
global history of the file and replaced it with a list of layer-
histories. The global history is now constructed by stick-
ing tougher the histories similar to [W. Keith Edwards,
Takeo Igarashi]. To see this in action let us look at the fol-
lowing example. We have a project with 3 layers, Layer
1, Layer 2 and Layer 3. The user starts working on the
first layer does 2 changes, we will call them A and AB. He
then continues working with the second layer, making 3
changes, we will name them 1, 12 and 123. When this is
finished he continues working the last layer making again
3 changes, labeled I, II and III. Finally, he goes back to the
first layer making 2 last changes with the labels ABC and
ABCD. The system holds 3 histories one for each layer, the
first history for layer 1 will contain A, AB, ABC and ABCD.
The second history will contain 1, 12 and 123 and the last
history will have I, II and III. Besides this the system also
holds information when the user has changed layers, who
has made the change on the layer, timestamp, tags etc. With
all of this information we can now construct a “global time-
line” that showcase all the changes that user has done, in
the following order: A, AB, 1, 12, 123, I, II, III, ABCD and
ABCD. We can see this process in the following diagram:

Figure 4.7: Construction of the global history

Now that we know how the history panel is being con-

54 4 Implementation and Design

structed let us explorer how the user can navigate it. As
we have seen from the main screen the changes are now
grouped, we scroll over a group to expand it, this expan-
sion is not linear, and is made over the point of hovering,
so that the user can choose which part he wants to focus
on. Time information is presented for the center node of
the group and also for the endings of the group. With the
expansion more time information is being displayed. Hor-
izontal scroll or the arrows keys can be used to navigate
forward or backward through the history. From our past
test we have seen that sometimes it is hard to see what
changes have been done, so for this version we introduce
a delta feature that displays for the node just the changes
from the previous version. And to make sure this change is
visible, we zoom in and center it in the frame. The current
selected version is highlighted with a red frame, and the
playback needle is next to it. This highlights change is al-
ways showcased in the main working area, selecting two or
more versions can be done holding the shift key. Doing so
will automatically open the comparison tool. We are look-
ing into offering multiple version editing, this could be an
interesting subject to research after the current version of
tool gets implemented. The playback needle is used with
the playback feather, and its purpose is to give a movie like
feel to the history. The user can use it to fast scroll over the
navigation, similar to what he can do with the arrow nav-
igation. This extra element is also present to improve the
visibility of the history panel, as keyboard shortcuts require
an extra degree of learning. To facilitate quick movement
around the different nodes we suggest the following key-
board shortcuts, holding Ctrl while using the left arrows
will move to the first change of a group, right arrow + Ctrl
will move to end, while holding arrow up will move to the
middle. Holding arrow down will expand the group one
level.

The last component of the history panel is the filtering sys-
tem. The system comes with four classes of filters, each
of them are applied to the result of the previous one, in a
pipeline manner. This four classes of filters are, spatial fil-
ters, location filters, user filters and tool filters. The spa-
tial filter will return changes that happen in the specific
area, the location filter will return changes that happen on

4.3 Third Iteration 55

Figure 4.8: Expanding the timeline by scrolling over groups
of versions

the specified layer or folder, the use filter will only show
changes made by a set user and finally the tool filter will
only show changes realized with that specific tool. These
filters can be combined to produce even more powerful
sorting methods. For example, we can ask for all changes
done on a layer, in this region, by a set user with the move-
ment tool. The output of this filter should limit the number
of presented changes and with the improved scroll system
should make finding a change easy. Popular changes can
be tagged for even easier location, limiting the overall time
the user spends on browsing. An important feature given
the fact that the application implements an automatic save,
creating a new node for each change.

Figure 4.9: The two modes of displaying the timeline; show
preview of the change or only the difference between it and
the previous state

56 4 Implementation and Design

Undo Model

One important contribution, is how the system handles un-
dos. Unlike many commercials system is doesn’t have a
global linear undo history, but a layer undo history. This
change eliminates most of the limitations of the classic
undo system describe in 2.5, but without the complexity of
a full on a selective undo system. A selective undo will pro-
vide more control but at the cost of higher cost of learning,
we believe this trade off provides the best of worlds with
the minimal disadvantages.

When the users press the keyboard shortcut for undo com-
mand, the system will check if a layer is select, if so it will
run the undo command on the layer history, a new state
will be created and save to history. If no layer is selected
the undo command will run on “the global timeline” simi-
lar to a classic undo command and the result will be saved
in the history.

Because the undo command creates a new version in the
history, the previous version is not lost, the only exception
to this rule is if that users follows the undo command with
a redo command, in this case to avoid any duplicate the
actions of this two command are removed from the history.

Having the previous undo versions saved in the history, al-
lows us to comeback even after the file has been closed. To
difference them from the traditional save nodes, they are
presented in the history panel as semitransparent nodes.
Any changed to these nodes will automatically promote
them to a branch, giving the user the possibility to continue
work on an old idea even if it was undo.

One last feature we will explore, is the ability to simulta-
neously undo 2 or more layers, shift selecting two or more
layer will create a “global” timeline, with undo command
running on this timeline. The same effect can be obtaining
by undoing on a folder of layer basics. From our observa-
tion in chapter 3 we saw that user group similar UI com-
ponents in a folder option, with this feature they have an
“undo” option on an object detail.

4.3 Third Iteration 57

Figure 4.10: Global undo and layer undo to see how the
global timeline is being built please check 4.3.2

Branching and Merging

One distinct features of the proposed version control sys-
tem is how branches are handled. Unlike previously ana-
lyzed systems, branches are not created by a branch com-
mand on the history, instead they are automatically created
when we choose to modify a node who already has a child.
This change cuts down on the learning curve, presenting a
more natural way of dealing with branches. Other changes
include the removal of names for branches, changing the
way branches are displayed and how users switch between
them, removal of branch deletion and how merges are han-
dled. Branches are also created when two or more users
work on the same node, or their working state already has
a child. At this point it is important to discuss how the
system’s architecture works. As we described in Chapter 2
there are two possible architectures a distributive approach
and a centralized approach. The system utilizes a mixture
of them, by default there has to be a root repository, this
serves as a backup and as a place to centralize changes, pro-
vide analytics and to manage user access. When a user first
creates a file the plugin will contact the server and initialize
a repository, at the same time it will create a local repository
that is a mirror on the main repository without the analyt-
ics functions. Changes are then streamed between the local
repositories, queued and finally sent to the server repos-
itory and any collaborators repository. The main server
repository also plays a role of rendezvous, helving the dif-
ferent users communicate between them. One important
feature in the future for this server could be as a DRM man-
ager, the local server could be encrypted and allow access
only while client is connected to the DRM server.

58 4 Implementation and Design

The main propose of the branches is to allow for different
versions of the same design. We already see the need for
this feature, as many designers simply create new versions
of the designs a layers, groups them in a folder and finally
hides them. Only to be seen when that version is being
need it. With the current branch model, once a branch is
created, the design in the new branch acts like a new file.
This can be a problem as we see in the following exam-
ple. Let us say we are working on a banner design for a
client. In this banner we have some text and some pricing
information. But the client once to target multiple markets,
and needs the text translated in multiple languages and the
price updated to fit the local market. With current solution
the designer, creates a base design in English, duplicates the
text and finally updates that text with proper translation.
To switch between the versions, he just hides or shows the
proper text. If try to do that in our system, we will create a
new branch and in this branch we will update the text. All
good if don’t want to do any other changes to the common
part of the design. If we want to do so, we need constantly
remerge this part of the file to the branch. The alternative
the system present is something called layers in sync, this
feature allows for a layer to modify in one branch and up-
date in other branches. The conditions for this feature, is
that the branches need to have a common ancestor, that we
can refer when this background merge to happen.

One last design decision we need to discuss is the omis-
sion of branch names and branch deletions. As we men-
tion before the aim of this tool is to provide a quick and
easy to use versioning control system for designers, branch
names make more sense in the world of software develop-
ment, in the design workplace there are more a niche. We
believe that the powerful tagging system, offers an alterna-
tive workflow. As for branch deletion, we decide to remove
the possibility of removing any item from the history, we
believe this safe guards the users from any work lost, and
because of the strong navigation system we don’t lose so
much time looking through uninteresting versions.

Last thing we need to discuss is how the merging system
works. In the previous iteration we used a merge system
similar to [Chang], while this is sufficient for a global his-

4.3 Third Iteration 59

tory it doesn’t fit with the current system design. For this
last iteration we implemented a new merge system.

Merges operate on a layer basics now, to perform a merge
the user can drag a layer/a group of layers from a version
to another version or drag a version on top of an another
version. In the first case the layer/layers are compared to
the ones in the new version. If they are not found, they
are automatic copied, if there are found the user has one
of the following two options. He can copy the new layers
while keeping the old layers, or he can try a merge with
the system described in [Chang]. In the second case, the
system first compares the list of layers from both versions.
If the layer appears in both version and contain the same
data, they are copied over to the new version, if the data
is different we have the same 2 choices as we presented in
the previous case. Layers that are not contain in one or the
other version are shown in a checkbox list, so the user can
choose what goes in the new version.

One important distinction between the other systems is that
a merge operation is not static, we can remerge two ver-
sions, create a new merge node that will be treated as new
branch. All merge nodes are shown with a green frame,
click on one of them will highlight two faded arrows show-
casing the new version from which this node has been cre-
ated.

Collaboration

As we mentioned in previous subsections, the system of-
fers support for multiple users with the option of multiple
uses working on the same time. This is accomplished with
branches, as soon two or more users work on the same ver-
sion the system creates a new branch. It is the job of the
users to decide who will merge the final version. To fa-
cilitate understanding all nodes created by another user are
automatically colored with the user color. As we mentioned
in the navigation panel the user can filter nodes by the user
who created them. The system also saves the undos of all
users and any other branches or tags they have created. Be-

60 4 Implementation and Design

cause the history is built iteratively the user can see in real
time what his colleague is working on. The feature of sync
layers minimizes the need to merge files. We imagine a
workflow where each user works on a separated layer to
avoid any conflicts, at the end one of the users merges the
other changes and finally tags the final versions. We first
observed this workflow while interviewing designers, they
mentioned that for some projects the have colleagues doing
special parts of the project like in the illustration, logo de-
sign, etc. Later someone takes them and integrates them in
the final design.

Figure 4.11: Multi-user support through branches

4.3.3 Evaluation

We went back to our initial two designers and showcased
the final version of the prototype. We’ve shown the fi-
nal design and explained with a simple paper prototype
how their actions will flow in the new design. To our sur-
prise the layer history model was not hard to understand,
one of the designers even said why there is no undo ac-
tion on a layer in Photoshop now. The navigation ordering
changes were also welcomed, the like the idea of scrolling
to see more content, but they presented a problem what
happens when a group contains too many changes, how
should the system handle this, should it create new subsec-
tion or change the scroll speed. This is an interesting ques-
tion that needs to be tested with a prototype before it can be
answered. The way branches are created presented some
doubts, they were expecting a command action, but after
presenting the drag and drop approach they considered
this much faster to use. Dragging a layer from one version
to another was the most applauded change, as they noted
this is a common use case in many projects. The users sug-
gested some changes on the tagging system. They wished

4.3 Third Iteration 61

to set up some profiles in the project with a template text,
i.e. Version # and that the system would Show an Option
to add a tag from that profile with the Name : ”populate”.
This will be also useful when working on a ’milestone’ base.
In the end they were happy how the project progressed and
would like to try out a working prototype.

63

Chapter 5

Summary and future
work

In this last chapter we summarize our proposed system and
the contribution we bring the field of HCI. We continue
by discussing the next step, implementing a limited proto-
type, challenges of set prototype and future directions for
research based on the idea of using layers to track changes.

5.1 Summary and contributions

We started this thesis with a question about why designers
aren’t using the same tools as developers to manage their
work. We see the challenges of building a Version Control
System, why a text based approach is easier to implement
and why it is not applicable to a binary format.

We explore the common language of a Version Control Sys-
tem and why it creates a steep learning curve and looks
on how current systems manage history for graphic design.
We see the advancements of having a Version Control Sys-
tem and how it can be used for much more than a simple
backup, having applications in other use-cases, e.g. train-
ing and collaboration [Fitzmaurice].

64 5 Summary and future work

We conducted a study and found out that most current de-
signers are not using a complete Version Control System,
instead relying for alternative solutions like Dropbox with
the corresponding set of limitations.

Based on our observation, we found that Designers use
Layer-Groups to organize their work. Further, we also
found that some designers don’t even organize the lay-
ers, and when they move them they only partially organize
them. This allows the omission of features from traditional
Version Control Systems such as commit messages, branch-
ing names etc. Instead, we chose a simpler approach to
minimize the initial learning effort, i.e. an automatic save
feature, which reduces the time needed for setup of a new
repository.

The current branch model is better suited for designers, as
opposed to the more “static” approach, which program-
mers have been thus far accustomed to. The proposed
merging system is also easier to understand as it treats
changes on a layer based system, instead of the full doc-
ument. The ability to drag and drop part of a file from a
previous change entry and merge it into the current ver-
sion automatically. This would greatly benefit users, show-
casing one of the big advancements of having a nonlinear
file history.

We combine the ’undo’ system with the Version Control,
allowing users to reuse ’undo’ states and offering a more
flexible ’undo’ system than the traditional linear model.

Ultimately we showcase how collaboration can be intro-
duced into the system, allowing the users to simultane-
ously work with minimal overlap conflict and due to the
“merge” system the time spent is reduced considerably.

5.2 Future work

As we previously mentioned, the next step will be to im-
plement the system and compare it to other systems. The
first task will be to assess feasibility of the auto-save system.

http://www.dropbox.com/

5.2 Future work 65

That is, whether or not the current navigation structure is
sufficient to handle an auto-save system, with a bounded
resulting numbers of changes. Other strategies could be
tested: calculating the pixel delta between two changes and
using the resulting value to create groups with similar delta
values, or assigning a score to each type of change, group-
ing changes with the similar score. We have already begun
modifying an open source painting application to record
each change. The next step will be using these changes to
test different navigation structures. As discussed in our ar-
chitecture section, the system needs to be distributive, how-
ever it requires a tracker to synchronizes changes and ex-
change the user information and access. An iterative con-
struction of the history is necessary in order to avoid the
long time needed for saving the different versions. Changes
can be arrayed and only differences could be sent when do-
ing synchronizations.

We carried out tests of the layer undo system onto a paper
prototype, which has shown promising results, very similar
with [W. Keith Edwards, Takeo Igarashi] .

Even if doesn’t come with Version Control System it is still a
useful tool in eliminating some of the problems of the linear
model without implementing a full object history model or
a selective undo model.

Future work is needed to determine if the current set of
filters is enough. The proposed layer filter system should
help reduce the searching time and in combination with
the other filters can produce fast results with minimal num-
ber of steps. The implementation will need to exploit this;
hashmaps will be needed when constructing the history
to optimize filter running processes. This idea of tracking
changes on parts of the file instead of the hole file can be
applied to other environments as well, that use similar ob-
jects.

We believe that the proposed solution would offer design-
ers a user-friendly and easily approachable system, that
would make their endeavor a more pleasant experience.
We hope that this paper would inspire future research on
this topic.

67

Appendix A

Designer VCS
questionnaire

• What tools do you use?

– Photoshop

– Illustrator

– CorelDRAW

– InDesign

– Other

• On how many projects do you work on a given day?

– 1

– 2

– 3

– More than 3

• How many files do you have to open on a given
project?

– 1

– 2

– 3

– 4

– More than 4

68 A Designer VCS questionnaire

• Do you save old versions of the files?

– Yes

– No

• How do you manage old versions?

– I save a local copy with a different name, like
version1, version2 etc

– I save my files on a file hosting service like drop-
box, google drive, creative cloud etc

– I use git / cvs / team foundation server

– I don’t save old versions

– Other

• Are there multiple people working on the same file?

– No

– Yes, one more person

– Yes, two people

– Yes, more than two people

• On average how much time do you spend on a
project?

– Less than a week

– A few weeks

– A few months

– More than year

– Other

• Have you been forced to revert to a previous version?

– Yes, often (more than 3 times per file)

– Yes, sometimes (at least once per project)

– Not really (once on some projects)

– No

• Have you been force to revert some parts of the file to
a previous version?

– Yes

– No

69

• What’s the most tedious thing when reverting a file
or a part of the file?

– Locating the file

– Merging the files (if you are restoring parts of it)

– Keeping track of the new file resulting from the
restoring

– Other

• On average how many iterations do you need, to
come up with the final design?

– Just one

– 2

– 2-5

– The design is never done

71

Appendix B

Versioning Control
Design Exploration
Interview

• For how long have you been working as a designer?

• What made you choose this field?

• Please describe a typical day at your job?

• On how many projects do you work during a day?

• How many files do you think you have to open daily?

• Is there someone else working on the same files?

• If yes, how do you collaborate?

• How do you keep track of the files?

• Do you keep different versions of the same file? Why?

• How do you review a design? What is the creative
workflow?

• How do you structure your work in a file?

• Did you have to go back to a previous version? Why?

• What ist the most annoying part of this history track-
ing?

72 B Versioning Control Design Exploration Interview

• Where do you get inspiration for your design?

• How you use that inspiration?

• What did you work on yesterday?

73

Bibliography

Hsiang-Ting Chen, Li-Yi Wei, Chun-Fa Chang. Nonlinear
revision control for images.

Kirby Ferguson. Everything is a Remix. http://
everythingisaremix.info/watch-the-series/.
[Online; accessed 12-June-2016].

Tovi Grossman, Justin Matejka, George Fitzmaurice.
Chronicle: Capture, exploration, and playback of docu-
ment workflow histories.

Antti Oulasvirta, Sakari Tamminen, Virpi Roto, Jaana
Kuorelahti. Interaction in 4-second bursts: the frag-
mented nature of attentional resources in mobile.

Brad A. Myers, Ashley Lai, Tam Minh Le. Selective undo
support for painting applications.

Jill Butler, Kritina Holden, William Lidwell. Universal Prin-
ciples of Design, Revised and Updated.

Donald A. Norman. The Design of Everyday Things.

Robert Nystrom. Game Programming Patterns.

Pexels. Stock man photo. https://www.pexels.com/
photo/man-couch-working-laptop-7066/, a.
[Online; accessed 30-June-2016].

Pexels. Stock woman photo.
https://www.pexels.com/photo/
macbook-apple-woman-computer-7362/, b.
[Online; accessed 30-June-2016].

Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pi-
lato. Version Control with Subversion.

http://everythingisaremix.info/watch-the-series/
http://everythingisaremix.info/watch-the-series/
https://www.pexels.com/photo/man-couch-working-laptop-7066/
https://www.pexels.com/photo/man-couch-working-laptop-7066/
https://www.pexels.com/photo/macbook-apple-woman-computer-7362/
https://www.pexels.com/photo/macbook-apple-woman-computer-7362/

74 Bibliography

Jun Rekimoto. Time-machine computing: A time-centric
approach for the information environment.

Ben Shneiderman. Creativity support tools accelerating
discovery and innovation.

smartinsights. Mobile marketing statis-
tics compilation. http://www.
smartinsights.com/mobile-marketing/
mobile-marketing-analytics/
mobile-marketing-statistics/. [Online; ac-
cessed 30-June-2016].

Steam. Steam hardware and software survey: June 2016.
http://store.steampowered.com/hwsurvey.
[Online; accessed 30-July-2016].

Scott Chacon, Ben Straub. Pro Git.

Slippery Thong. Every Designer in The World. http://
imgur.com/VbWttOp. [Online; accessed 12-June-2016].

Anthony LaMarca, Elizabeth D. Mynatt W. Keith Edwards,
Takeo Igarashi. A temporal model for multi-level undo
and redo.

Laura Wingerd. Practical Perforce.

http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://store.steampowered.com/hwsurvey
http://imgur.com/VbWttOp
http://imgur.com/VbWttOp

Typeset August 1, 2016

	Abstract
	Acknowledgements
	Conventions
	Introduction
	Background and Related Work
	Fundamentals of a Version Control System
	Constructing a Version Control System
	Glossary of a Version Control System
	Creative Tools
	History Models
	Version control for Graphic Design
	Time-Machine computing

	Pilot study
	Online questionnaire
	Online user observation
	User interview
	Personas
	Summary

	Implementation and Design
	First Iteration
	Concept
	Implementation
	Evaluation

	Second Iteration
	Concept
	Implementation
	Evaluation

	Third Iteration
	Concept
	Implementation
	Main screen
	History Panel
	Undo Model
	Branching and Merging
	Collaboration

	Evaluation

	Summary and future work
	Summary and contributions
	Future work

	Designer VCS questionnaire
	Versioning Control Design Exploration Interview
	Bibliography
	Index

