
by
Björn Heinen

Thesis at the
Media Computing Group
Prof. Dr. Jan Borchers
Computer Science Department
RWTH Aachen University

Thesis advisor:

Second examiner:

Registration date: 12.06.2012
Submission date: 12.09.2012

A Live Coding Editor

Prof. Dr. Bernhard Rumpe

Prof. Dr. Jan Borchers

iii

I hereby declare that I have created this work completely on
my own and used no other sources or tools than the ones
listed, and that I have marked any citations accordingly.

Hiermit versichere ich, dass ich die vorliegende Arbeit
selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, September2012
Björn Heinen

v

Contents

Abstract ix

Acknowledgements xi

1 Introduction 1

2 Related Work 5

3 First User Study 11

3.1 The Prototypes 11

3.1.1 Interface Version 1 12

3.1.2 Interface Version 2 13

3.1.3 Interface Version 3 14

3.1.4 Interface Version 4 14

3.1.5 Interface Version 5 14

3.2 Course of the User Study 15

3.3 Results . 16

3.3.1 Further Comments and Suggestions
for Improvement 20

vi Contents

3.3.2 Conclusions 21

4 Implementation 27

4.1 First Approach (discharged) 27

4.2 Basic Evaluation Technique 28

4.3 How Values Are Being Calculated 29

4.4 Problems . 31

5 Second User Study 35

5.1 Course of the User Study 35

5.2 Results . 37

5.2.1 Debugging Times 37

5.2.2 System Usability Scale 38

5.2.3 Qualitative Results 39

5.2.4 Discussion 41

6 Summary and future work 43

6.1 Summary . 43

6.2 Future Work 44

A Code for the Second User Study 47

B System Usability Scales 49

Bibliography 53

vii

List of Figures

1.1 A Live Coding Editor presented by Bret Vic-
tor [Victor] . 2

1.2 The key parameter has been changed 3

2.1 ”A screenshot of the Rehearse editor. (1)
The function declaration, parameter names,
and current values; (2) a statement that has
been executed and (3) the result of execu-
tion; (4) an undone statement; (5) the current
line” [Brandt et al.] 6

2.2 A screenshot of the plug-in presented
by [Edwards, 2004] 7

3.1 Version 1: The evaluated version of the code
is on the right-hand side and keeps its struc-
ture and syntax highlighting 22

3.2 Version 2: The evaluated version of the code
is on the right-hand side but is ranged right . 23

3.3 Version 3: Small pop-ups indicate the value
of a variable 23

3.4 Version 4: The evaluated version of a line is
inserted right behind the line itself 24

viii List of Figures

3.5 Version 5: Only the values of the variables
are in between the lines 25

3.6 Interface after the first user study 26

4.1 Screenshot of Brackets with our extension . . 34

5.1 Box plot for the different task completion times 38

5.2 Box plot for the SUS-values with and with-
out extension 39

5.3 Box plot for the additional points on the
questionnaire 40

6.1 Version 1: The evaluated version of the code
is on the right-hand side and keeps its struc-
ture and syntax highlighting 45

B.1 SUS questionnaire for debugging using
Brackets . 50

B.2 SUS questionnaire for the Live Coding exten-
sion . 51

ix

Abstract

Live Coding seeks to provide an environment that helps programmers to under-
stand the internal behavior of a program with the help of examples. The goal of
this thesis is to create an editor that takes exemplary parameters for a function and
continuously executes the current version of the code with those parameters. To
help the programmer understand the control flow of the program, not only is the
according return value of the function continually updated, also the environment
shows what happens with the exemplary parameters inside the code between in-
put and output. A qualitative study with 6 users has been conducted to find the
best way of displaying the link between the code and the constantly updated eval-
uations. The result, an environment that keeps a traditional editor on the left-hand
side and an evaluated version of the current code (keeping syntax highlighting and
indents) on the right-hand side, has been implemented in form of an extension for
the open source editor Brackets. Finally, a study with 20 users has been conducted
to find out if there is an improvement in the debugging speed of experienced pro-
grammers. Although the user study yielded non-significant results, there is evi-
dence that there is an improvement in the debugging speed and that significant
results can be obtained.

xi

Acknowledgements

First of all, I would like to thank everybody who participated in my user studies,
Your valuable informations and feedback enlarged my opportunities.

Furthermore, Jan-Peter Krämer deserves my thanks,
Without whom this work would consist of nothing but blanks.

I would like to thank all my good friends, too,
Whose long-standing amity I am looking forward to.

Last but not least, special thanks to my family, particularly my parents,
And, unfortunately, this is where my English ends.

1

Chapter 1

Introduction

Most of todays’s IDEs make a clear separation between
editing the code and debugging it. To switch from pro- Overhead results

from the separation
between editing and
debugging

gramming to debugging and vice versa, usually the
programmer has to use another mode in the IDE. This way,
not only looses the programmer a significant amount of
time through the emerging overhead, but the working flow
gets interrupted, too [Edwards, 2004].

Permanently having to switch between modes has another
drawback. The probability of loosing time because the pro- Wasted development

time through
Ignorance Time and
Fix Time

grammer continues coding after a bug has been introduced
increases considerably. [Saff and Ernst, 2004b] reported on
this phenomenon: They said that larger Ignorance Times
(the time between introducing a bug and becoming aware
of it) yield larger Fix Times (the time between becoming
aware of a bug and fixing it). Therefor, an IDE should
provide tools to keep the Ignorance Time as well as the
overhead produced by switching between different modes
as low as possible.

When Bret Victor gave his speech ”Inventing on Principle”,
he was talking about something very similar: Direct delay-
free feedback. To show what he was talking about, Victor
presented an editor that continuously executes the code as
soon as it has been entered and not only shows the actual

2 1 Introduction

result but also reveals information about its internal behav-
ior. Figure 1.1 shows how his interface looks like using the
example of the binary search algorithm.

Figure 1.1: A Live Coding Editor presented by Bret Vic-
tor [Victor]

On the left-hand side, the code can be changed as usual. At
the top of the right-hand side, exemplary parameters can
be entered for which the code then gets executed. Further
down, the values for each variable in each iteration and
the return value are shown. For example, in the line varBret Victor presented

an editor that gives
immediate

information about a
program’s internal

behavior

high = array.length - 1;, the editor says high =
5 This way, the programmer does not have to imagine
what happens between executing the code with exemplary
parameters and getting back the according result but can
actually see it. As mentioned above, this happens as the
code gets edited, so there is no delay between a change and
seeing its impact on the code. Figure 1.2 shows an example
of how helpful this can be. The key the algorithm searches
for has been changed to ’g’, which is not in the array.
Since the invariant of the loop is 1, the algorithm can only
terminate when the key has been found in the array. In this
case, however, the loop iterates endlessly. The solution is
to replace the invariant by low ≤ high. A solution that
is obvious once the programmer sees that, in the fourth
iteration, low gets greater than high and nothing else
changes anymore.

The direct, immediate feedback Victor was talking about is
the basic idea of my thesis. Since he designed his editor

3

Figure 1.2: The key parameter has been changed

only to show what he was talking about in his speech, his
prototype is very low fidelity and has some basic usabil-
ity flaws (most importantly: Only 5 iterations can be dis-
played and the functionality is very limited). Furthermore,
his editor has never been evaluated, neither in a qualitative
user study, nor in a quantitative one. My thesis will pick
up his idea, develop it and finally evaluate it. To do so,
two iterations of the DIA-cycle (that is, Design-Implement-
Analyze) have been done: We started with a literature re-
search (see Chapter 2) to get an overview what research has
already been done with regards to Live Coding. We then Overview of the

thesisimplemented a low fidelity prototype and evaluated it in a
qualitative user study to find out which basic interface de-
sign provides as much analogy between the code and its
evaluation (see Chapter 3). Afterwards, we implemented a
software-prototype (see Chapter 4) to conduct the second,
quantitative user study, which should reveal if the interface
enhances the work flow significantly (see Chapter 5).

5

Chapter 2

Related Work

The idea of maintaining a continuous connection between
code and output is not not new. Already back in 1985, The idea of

continuously
executing code has
already been
presented in 1985

[Henderson and Weiser, 1985] stated that the classical
Edit-(Compile-)Execute cycle, where program editing and
execution are independent activities, is not optimal. They
stated that the relation between input and output should
continuously be kept consistent.

[Pane and Myers, 1996] proposed that a system should
support incremental testing and feedback and help detect, Incremental testing

and feedback
improve productivity

diagnose and recover from errors. Although they were
recommending heuristics to improve novice programming
systems, these advices also help improving the productiv-
ity of experts.

This concurs with [Ko et al., 2004], who reported on learn-
ing barriers in programming systems. Among others, they 2 learning barriers:

Understanding
Barriers and
Information Barriers

reported on the so called Understanding Barriers and Infor-
mation Barriers. Understanding Barriers happen when code
behaves differently from what the user expected. If, for
example, there is a compile-time error and the user cannot
extract which part of the code is deemed wrong by the com-
piler from the error message, then this is an Understanding
Barrier. In the user study Ko et al. conducted, most (34 of
38) of these Understanding Barriers were insurmountable.

6 2 Related Work

Information Barriers are elements in the environment
that make the internal behavior of the program hard to
understand. They happen when a user builds a hypothesis
about the internal behavior of the program but cannot use
(or find) a tool the environment provides to verify that
hypothesis. In Ko et al.’s user study, most of these under-
standing barriers (10 of 14) were insurmountable. To help
the programmer, an IDE should reveal what a program
did or did not do at compile or runtime and, in addition, it
should be possible to inspect a program’s internal behavior.

Although the idea of helping the programmer under-
stand the internal behavior of a program by example is
not new, current environments only offer little help forCurrent

environments offer
little help for

understanding and
adapting examples

understanding and adapting examples. Therefore, [Brandt
et al.] have implemented Rehearse, an editor that provides
immediate evaluation and infinite undo of execution.
A screenshot of this editor can be seen in Figure 2.1.
Although Rehearse embodies the immediate feedback

Figure 2.1: ”A screenshot of the Rehearse editor. (1) The
function declaration, parameter names, and current val-
ues; (2) a statement that has been executed and (3) the re-
sult of execution; (4) an undone statement; (5) the current
line” [Brandt et al.]

and the maximal illumination we are striving for, there
are issues with it. First, Rehearse disturbs the user in
his usual programming practices. For example, it is notAdvantages and

disadvantages of
Rehearse

possible to edit a function in the usual editor while it is
open in Rehearse. This means that there are two ways of

7

editing a function (either the usual way with a standard
editor or interactively with Rehearse) and they are mutual
exclusive (this issue has also been reported as a result
of the user study Brandt et al. conducted). We think it
is best to integrate the interactive functionality into the
standard one so that the user does not, again, have to
switch between different modes. Additionally, Rehearse
provides functionality to help the programmer explore
alternative paths by undoing arbitrarily many executed
lines while the goal of our editor is to show what hap-
pens in the code with exemplary parameters to help the
programmer understand what internal behavior the code
has. This way, the programmer can work uninterrupted
and still get information about the behavior of his program.

Similarly, [Edwards, 2004] stated that it improves the work
flow if the programmer does not have to leave the environ-
ment to see what result the execution of an example yields.
He says, the best way to understand code is by thinking
of concrete examples. To solve the problem that the pro- Examples help

understanding codegrammer has to emulate the behavior of the program in his
head, as much code as possible should be illuminated with
examples. Edwards built a plug-in for Eclipse, for which
a screenshot can be seen in Figure 2.2. The results on the

Figure 2.2: A screenshot of the plug-in presented by [Ed-
wards, 2004]

left-hand side of the interface get updated as soon as there
is a change in the code. From a theoretical point of view,
this is exactly what we intend to do: The code is continu-

8 2 Related Work

ously executed for exemplary parameters while the user is
working on it. From a practical point of view though, this
plug-in has several drawbacks. First, the analogy betweenIdea and drawbacks

of Edwards’ plug-in code and evaluation is not very strong (e.g. not as strong
as the one in Rehearse), so it is not as easy for the user
to follow the control flow of the program as it should be.
There are further usability issues: Skipped code is greyed
out. This is a good idea since the user can see which part
of the code has been executed and which part has not. The
problem is to see for which parameters the code has been
skipped. In Figure 2.2, for example, fact has been called
with the values 1 and 3 and, in addition, subsequently
with the parameters 0 and 2 (resulting from the recursive
call of fact in the else statement). For which of the
parameters the else statement has been skipped is not as
obvious as it could be. Furthermore, it is suboptimal to
call the function with exemplary parameters in the code
itself. This way, a programmer cannot write code as usual
and just extract the additional information but has to insert
”foreign” code to be able to see what happens inside the
code and then later has to remove the additional code
again because it has nothing to do with the functionality
the programmer wanted to write in the first place. Finally,
Edwards presented the plug-in without evaluation of any
kind, so a remaining task is to find out if or how much this
kind of feedback improves the work flow (see Chapter 5).

In [Boehm, 1979], it was reported that modifying software
basically consists of three phases:How modifying

software works

• Understanding the existing software

• Modifying it

• Revalidating the modified version

We believe that our interface helps improve (thereby speed
up) this whole process (our second user study’s goal was
to find out whether this is true, see Chapter 5). This
supposition is supported by [Erdogmus et al., 2005], where
it is said that instant feedback whether new functionality

9

has been implemented properly helps reducing wasted
development time.

Finally, our approach concurs with the idea of Opportunis-
tic Programming [Brandt et al., 2008], [Brandt et al., 2009a],
[Brandt et al., 2009b]. Brandt et al. say that frequent itera-
tion is a necessary part of learning and understanding un-
familiar code. Therefore, an opportunistic programmer will Opportunistic

programmers choose
tools that speed up
iteration

select a tool that speeds up iteration. They also state that the
Edit-Debug cycles in opportunistic programming are very
short. About 50% of these cycles are shorter than 30 sec-
onds and even 80% are shorter than 5 minutes. Our tool
would help reducing the resulting overhead since the out-
come is instantly visible without having to change modes
or compile and execute.

11

Chapter 3

First User Study

3.1 The Prototypes

The main goal of our first user study was to find out which
basic interface design is the optimal one, especially with Goal of the first user

studyregards to the link between the code and the evaluated
version of the code. It should work in a way such that the
programmer does not get disturbed in his usual work but
that the interface still provides as much information as
accessible as possible.

To find out how such an interface would look like, we im-
plemented low fidelity prototypes for 5 different interfaces
in Ruby. Basically these prototypes consisted of pictures 5 low fidelity

prototypes for Ruby
have been
implemented

that show how the interface would look like for some ex-
emplary code with exemplary parameters. Each interface
has been illustrated using 5 pieces of code as example (Fig-
ures 3.1-3.5). Note: The font used in all prototypes was sup-
posed to emphasize that these prototypes are low fidelity
so that the users had not inhibitions telling us fundamental
flaws in the interface design.

12 3 First User Study

3.1.1 Interface Version 1

Figure 3.1 shows the first interface with an implementation
of the binary search algorithm. In this version of the
interface, an evaluated version of the code is inserted in an
additional section in the right half of the window. At the
top, the exemplary parameters can be manipulated. Then,
in the line high=array.length-1, the first evaluation
takes place. On the right-hand side of the window, the
right-hand side of the assignment has been replaced by
the according evaluation: 5. Afterwards, all values are re-Interface variant 1

divides the
environment into two.
The left-hand side is

a usual editor and
the right-hand side is
the evaluated version

of the code

placed in a similar way. That is, in simple assignments, the
right-hand side is substituted completely and in invariants,
the condition has been computed up to the penultimate
step. This way, e.g. while(low <= high) gets evaluated
to while(0 <= 5) instead of while(true).

EXCURSUS:
We also thought about showing what would happen in-
side an if statement even if it fails so that the user could
see what the code could do alternatively. We discharged
this idea however because of two problems: Firstly, we
suspected that this might quickly become a confusing ex-
perience for the user. Secondly (and most importantly),
the Halting Problem would have to be decidable. Sup-
pose the following code had to be evaluated:
if(x>0){while(x!=0){x--;}}
else {while(x!=0){x++;}}
Then the interface would fall into an infinite loop (for any
value of x except 0) although the code would not. For
x=1 for example, the actual code would only make one
iteration in the first loop. The interface however would
try to calculate the values of the second loop, too.

Further down in Figure 3.1(a), there is the following ele-
ment:

1
This element will subsequently be called iterator. The
iterator indicates which iteration of a loop is being shown.
Pressing the right arrow increments the shown iteration
(Figure 3.1(b)), pressing the left arrow decrements it,
accordingly. Furthermore, the code for the elsif and the
else statements is not visible on the right-hand side of the

3.1 The Prototypes 13

window. The reason is that the first if statement holds
and, therefore, the following ones are not executed. In
Figure 3.1(b), the first if statement failed (greyed out), the
second one holds and the third one is hidden again. This
way, all code that gets executed is shown (corresponding to
Jonathan Edwards who said that as much code as possible
should be ”illuminated”[Edwards, 2004]).

3.1.2 Interface Version 2

Figure 3.2 shows the second version of the interface with
an in place implementation of the selection sort algorithm
(note that each interface variant has been implemented Interface variant 2

copies a not
highlighted,
evaluated version of
the code to the right
part of the window

with each algorithm). The differences to the previous in-
terface variant are:

• The parameter names are red to signal manipulability

• No syntax highlighting

• Evaluated code has no indents and is right aligned

• No dividing line

EXCURSUS:
Note that the iterator in this interface looks like follows:

i=1
This design reveals what variable the iterator refers to.
This kind of iterator does not depend on the type of in-
terface but on the type of loop. In for and upto loops,
this kind of iterator has been used since it is possible to
correlate the values of one variable and the iterations of
a loop. In the later prototypes, however, we discharged
this idea again because it only was this easy to correlate
a variable and the iterations of one loop because the ex-
amples were quite simple. In realistic situations, this cor-
relation will oftentimes not be possible.

This version was supposed to take up as little space as
possible while still having a complete (evaluated) version
of the code in a different place.

14 3 First User Study

3.1.3 Interface Version 3

Figure 3.3 shows version 3 of the interface with an im-
plementation of Bubblesort. Small pop-ups indicate theInterface variant 3

uses small pop-ups
that indicate the

value of a statement

value of all statements that are evaluable. For example,
the (manipulable and therefore red) value of array is
[1,42,37,16] and the value of array.length-2 is 2.
There are no pop-ups in the code when it is not executed
and failed invariants are greyed out. The iterator works
like the one in the example for version 2 of the interface but
is now inserted into the code. This interface’s purpose was
to consume as little space as possible while still providing
all possible evaluations.

3.1.4 Interface Version 4

Figure 3.4 shows interface version 4 with an algorithm that
converts the fractional part of a decimal number into its bi-Interface variant 4

puts the evaluated
version of a line

between that line and
the next one

nary representation and outputs the result to the console.
This interface variant slots the evaluated version of a line
of code right between that line and the next one. The name
of manipulable parameters is highlighted in red and there
is no syntax highlighting. Failed invariants are greyed out
and not executed code is not displayed, as usual. The goal
of this interface version was to find out if the link between
code and evaluation becomes clearer when the evaluation
is very close and very similar to the code it results from.

3.1.5 Interface Version 5

The last variant of the interface can be seen in Figure 3.5
with an algorithm that checks whether a given number nInterface variant 5

indicates the value of
a statement by

writing it underneath
that statement

without keeping
keywords

is a prime number or not. It is similar to the previous one
but only shows ”relevant” information. This includes right-
hand sides of equations and for conditions the actual in-
variant but excludes left-hand sides of equations and key-
words like else or while. Apart from this, version 4 and
5 are exactly the same (parameters in red, no syntax high-
lighting, not executed code is not shown, failed invariants

3.2 Course of the User Study 15

are greyed out). We developed this variant because, in ver-
sion 4, the user might confuse actual code with evaluated
code. We wanted to check if a variant without replicating
control structures is better (less confusing).

3.2 Course of the User Study

The first user study was a qualitative user study. It was
supposed to reveal what basic interface design is preferred
by users and where there might be flaws in the interfaces.
Different techniques for qualitative user studies have been
used, in particular the Model Extraction method and the
Think Aloud method. The basic structure was the following:

• First, the experimenter introduced himself and the
project. He assured the participant that he would Introduction to the

user studystay anonymous and that he could ask questions or
make comments whenever he likes. To make sure the
Model Extraction worked fine, the part concerning
what the thesis and the user study where about was
very firm. The solution we have come up with was
to explain the general idea of Live Coding (that we
are designing a kind of editor that takes exemplary
parameters for a method the programmer works on
and then evaluates it continuously while changes are
being made) without revealing anything further like
”and then there is going to be a button with which
you can flick from iteration to iteration”

• Afterwards, one version of the interface was pre-
sented to the user together with the following ques- Model Extraction
tions: ”What do you think you see here” and ”What
do you think you can do with it?”

• After the user told everything he or she knew or if the
user had a gulf of understanding [Norman, 2002], the Explanation of the

interfaceparts of the interface, which the user did not under-
stand were explained and we went through all itera-
tions once to make clear how the interface works

• The next goal was to find out if the user had prob- Suggestions for
improvement?lems in understanding elements of the interface, if he

16 3 First User Study

thinks that there are things that can be done better, et
cetera

• Lastly, the other interface variants were shown to the
user with the same piece of code and it was explainedGoing through the

remaining interface
variants

how they worked, how they differ from the previous
ones and we went through all iterations once so that
the user could get a feeling for the interface. After
each variant, the user was asked what he thought of
the interface (and why) and what he thought was bet-
ter or worse compared to the previous ones

Whenever the user had a question or there was an inter-
esting topic that lead to more interesting information, this
point was discussed in more depth.

3.3 Results

The user study was conducted with 6 different users. All of
them studied Computer Science, were in the sixth semester
and had between 4 and 10 years of programming experi-
ence. Only one of them had worked with Ruby before. All
users took part voluntarily and were not rewarded in any
way. The conditions were randomized and looked like fol-
lows:

User ID Algorithm Order of versions
1 Bubblesort 3,1,2,4,5
2 Selection sort 4,5,3,2,1
3 Fractional part10 → Fractional part2 2,5,3,4,1
4 Prime number test 1,3,5,4,2
5 Binary search 5,2,4,3,1
6 Binary search 3,4,1,5,2

This means that, for example, user 1 saw interface version
3 first and then versions 1,2,4,5 in that order. In all variants,
he worked with the Bubblesort algorithm.

The user study yielded two major results:

3.3 Results 17

• Most users liked version 1 better than the other ones.

• Not a single user understood what the iterator is good
for or what it might do.

In more detail: Three users (users 1, 2 and 4) stated clearly
that they liked version 1 the most. User 3 was not quite 3 users liked version

1 the most, 1 user
liked version 4 the
most, 1 user could
not decide between
version 1 and 2 and
1 user could not
decide between
version 1 and 3

sure whether he liked version 1 or version 2 more. He
stated that a mix between the two variants where there
is no syntax highlighting would be the best because he
got confused the first time he saw version 1 and did not
directly see that the code on the right-hand side of the
window is not actually code but the evaluation. User 6 was
not sure if he preferred version 1 or version 3. He stated
that, if there is enough space on the screen, version 1 is
better but with all the other elements of a typical IDE, a
line of code might oftentimes be too long so that there is no
place to show the line itself as well as its evaluated version
(a concern that user 3 communicated as well). Without
this problem though, user 6 said that version 3 is worse
because the interface might get messy and distracting
quickly because of all the pop-ups right next to the code.
In addition, he said, with more complex code, it might be
problematic to see which pop-up refers to which part of
the code. Finally, user 5 stated that he likes version 4 the
most. The reason was that he did not have to look to the
right if he wanted to see the value of a variable and then
search it there but that in version 5 the information was
exactly at its source. He only said that this version might
be problematic to work with since the reading flow is influ-
enced negatively and he feared that he would loose much
space on the screen and would therefore have to scroll a lot.

Each user stated that the main benefit of version 1 and
2 was that the actual code remained unaffected. This
corresponds to what [DeLine et al., 2006] reported on the
perceptual model a programmer builds of the code: When Perceptual model of

the code should
remain unaffected

navigating through source code, a programmer uses a
perceptual model to do so. This way, the programmer does
not need to read the code (cognitive) to know which part he
is seeing but can do so by looking at its ”visual landmarks”
(perceptual). While version 3 affects this perceptual model
negatively but does not break it, version 4 and 5 have the

18 3 First User Study

disadvantage to do so.

To most of the users, the basic structure of the interfaces
was clear after only a few seconds. Only two of them
confused actual code with the evaluation for a short time:
User 5 when he saw version 5 the first time and user 4
when he saw version 1 the first time. However, neither of
them needed help or much time to figure how the interface
worked after they started to read more precisely. Each
user’s first question or comment concerned the font and
how awful they (every one) thought it was. After a brief
explanation why we chose this particular font, each user
got used to it quickly.

No user understood the iterator. None of them got the
connection to the while, upto or for next to the iterator.Iterator is not self

explaining After the explanation what the iterator does, some users
said they thought the left and right buttons were ”<” and
”>” signs.

The following tables summarize the pros and contras for
each interface:

Version 1
Pros Contras
· The control structure (in-
dents) is still present
· Because of the indents
and the syntax highlighting,
there is a strong analogy be-
tween the code and its eval-
uated version
· There is a clear separation
between code and evalua-
tion
· The editor remains un-
changed

· Needs much space
· User has to look from the
left to the right and vice
versa to see two pieces that
are correlated. In other
words, a line of code and its
evaluated version are too far
away from each other

3.3 Results 19

Version 2
Pros Contras
· The editor remains un-
changed
· Code and evaluation do not
get confused because they do
not look the same
· Needs less space than ver-
sion 1

· Less analogy than in ver-
sion 1
· User needs to look from
the left to the right and vice
versa. This is being compli-
cated by the fact that with-
out indents and syntax high-
lighting it is even more diffi-
cult to find the point of inter-
est
· Needs a lot of space

Version 3
Pros Contras
·Needs minimalistic amount
of space
· The code structure itself re-
mains untouched

· Oftentimes not clear which
pop-up refers to which part
of the code
· Can get messy quickly

Version 4
Pros Contras
· Strong analogy
· Better for lines of code that
are too long for version 1 and
2
· Evaluations right next to
their source

· Code and evaluation get
confused quickly, especially
usual reading might be prob-
lematic since one has to skip
every second line depending
on what he wants to read
· Perceptual model gets de-
stroyed
· Might be demanding to
navigate when already long
documents get double as
much lines

20 3 First User Study

Version 5
Pros Contras
· Evaluations right next to
their source
· Better for lines of code that
are too long for version 1 and
2

· Oftentimes it is not clear
what a value refers to
· Still distracting during code
reading
· Perceptual model gets de-
stroyed
· Might be demanding to
navigate when already long
documents get double as
much lines

3.3.1 Further Comments and Suggestions for Im-
provement

One of the users pointed out that in version 3, the iterator
has been inserted into the code and therefore it now isInterface version 3

can produce
syntactically wrong

code

syntactically wrong (for i in 1..4 becomes for i=2
in 1..4 for the second iteration, for example).

Two users suggested that for version 4 and 5, curly braces
could indicate to which part of the code the evaluation
refers.

Some users suggested to make the number on the iterator
directly manipulable so that if one would want to go toSuggestions for

improving the iterator iteration 42 one would not have to press 41 times a button
but could just enter 42. In addition, some users said they
wanted a button for jumping to the first and a button for
jumping to the last iteration. Two users said it would be
good if there is something that indicates directly that the
iterator actually shows iterations like the term ”Iteration #”
or anything similar.

We noticed that the manipulable parameters and the
evaluation results have to be distinguishable more easily .

3.3 Results 21

One user proposed that if the cursor moves over some
variable in the evaluation part, a small pop-up could
indicate to which variable a value belongs.

One user said that it might be helpful that, for bigger
boolean expressions that fail, it would be visible which part
of the expression is responsible for the failure.

3.3.2 Conclusions

With large screens (24” and more) becoming more and
more common in modern work environments of program- Version 1 is the

favored onemers, we can override the concerns about loosing too much
space with version 1, which is the reason why it is the clear
favorite. Figure 3.6 shows the basic interface after the first
user study.

The iterator has been improved in several ways:

• New buttons for jumping to the first and the last iter-
ation have been added

• There is a text field with which the iteration can be
manipulated directly

• A tooltip now indicates the variable to which a
value belongs when hovering over the value with the
mouse

• The label Iteration has been added at the top of the
iterator

The way of manipulating the parameters has been changed.
The function header now also is copied to the right side A new way of

manipulating the
parameters

but the names of the parameters are replaced with a text
field in which the according value can be entered. This way,
both, the analogy to the code and the separation between
parameters and evaluation are being enhanced.

22 3 First User Study

(a) First iteration

(b) Second iteration

Figure 3.1: Version 1: The evaluated version of the code is
on the right-hand side and keeps its structure and syntax
highlighting

3.3 Results 23

Figure 3.2: Version 2: The evaluated version of the code is
on the right-hand side but is ranged right

Figure 3.3: Version 3: Small pop-ups indicate the value of a
variable

24 3 First User Study

Figure 3.4: Version 4: The evaluated version of a line is
inserted right behind the line itself

3.3 Results 25

Figure 3.5: Version 5: Only the values of the variables are
in between the lines

26 3 First User Study

Figure 3.6: Interface after the first user study

27

Chapter 4

Implementation

After the first user study had been finished and the results
had been analyzed, a software prototype with sufficient A software prototype

had to be
implemented

functionality had to be implemented to conduct the second
user study. Hence, we wrote an extension for Brackets1 , an
open source editor that has recently been released officially.

The language we wrote the extension for was JavaScript.
What we needed was an extension that could calculate the
values of the variables that had to been substituted.

4.1 First Approach (discharged)

The initial idea was to write an extension that connects via
V8-Node2 (an extension that maintains a connection to a Initial idea: Use

V8-Node an Node.js
to get the locals

Node.js3 /V8 debugger) to an external debugger and lets it
evaluate the code. Our extension was supposed to supply
the actual code to the debugger and set a breakpoint in the
first line of actual code. Then it read the locals (that is, the
local values for all active variables) and stepped over to the

1https://github.com/adobe/brackets
2https://github.com/DennisKehrig/brackets-v8-node-

live/tree/nodeChildProcess
3http://nodejs.org/

 https://github.com/adobe/brackets
https://github.com/DennisKehrig/brackets-v8-node-live/tree/nodeChildProcess
http://nodejs.org/

28 4 Implementation

next line. After all locals had been collected, the extension
should substitute all necessary values. There were prob-
lems with this approach. Firstly, the extension is not stableThis extension was

not usable for a user
study

enough to be usable in a user study. Secondly, it is too slow.
It needs more than half a second for one evaluation. This
is way too much since we wanted something that could
evaluate the code as the user edits it without any further
delay (hence the name ”Live Coding”). With this extension
it would only have been possible to update the evaluation
using a special shortcut or to attach this function to another
shortcut like the Ctrl+S shortcut for saving. Since this
was by far not the optimal way, we decided to start all over
again.

4.2 Basic Evaluation Technique

In the second approach, we did not try to externalize the
script execution but instead made vast use of JavaScript’s
built-in eval function. The eval function takes a StringSecond approach

using eval to
evaluate dynamically
generated code that
returns the value of

interest

as parameter. If this String contains valid JavaScript code,
eval will evaluate the code and return the last executed
statement. eval("var i=1;i=i+5") will return 6, for
example. The extension basically works as follows: A
loop that runs over all DOM-elements in the highlighted
code searches for substitutable variables. While searching
for these elements, the loop captures in which context
the actual DOM-element is. The three basic contexts are
simple substitutions, substitutions within one loop and
substitutions within a nested loop (why this is, will be
explained below). But there are also other things the loop
checks for. For simple assignments, like i=x+y;, x and
y have to be substituted while i does not. In lines where
a loop begins, the iterator has to be appended, invariants
have to be treated differently, et cetera.

Note that right-hand sides of assignments are handled
slightly different from what has been presented in the
prototypes of the first user study. They do not get evalu-
ated to the last step and invariants do not get evaluated

4.3 How Values Are Being Calculated 29

to the penultimate step anymore. Both of them get only
evaluated one step. For i=1 and z=2, the right-hand side
of x=i+z; does not get evaluated to 3 but to 1+2. We
decided to do it this way because some users in the first
user study stated that they did not only want to see what
the result of an operation is but also how it got there.

When a substitutable variable has been found, its value will
be computed. For that, the eval function is used (see sec-
tion 4.3 for details) and the value will be inserted. This
whole process takes place each time there is a change in the
code or if one of the parameters gets changed. If another it- How the extension

reacts to changeseration of a loop that is being shown is selected, all values
inside that loop will be calculated again.

4.3 How Values Are Being Calculated

Depending on the context of the variable, a piece of
code will be generated (and then evaluated) that, when
evaluated with eval, returns the value of the variable of
interest. For simple substitutions outside of any loops, this
works like follows:

Suppose the following code had to be evaluated for x=0:

function foo(x){
var i=0;
var j=x+1;

}

Then, x in the third line would have to be evaluated. To do How the values are
calculated for simple
substitutions

so, the following String would be generated:
"var x=0;
var i=0;
x;"
So, for simple substitutions, the whole code preceding the
variable that has to be substituted is copied and each pa-
rameter is initialized as var with its exemplary value at the

30 4 Implementation

beginning.

For simple loops, this method has to be extended: First, it
has to be found out how often the loop is executed. ThisSubstitutions within

one loop serves two purposes: First the iterator now shows the
number of iterations of the loop. Second, we have to check
if the user wants to see an iteration that does not exist. This
is being done by introducing a counter that is incremented
in each iteration of the loop and then returned when the
loop terminated. The following example shows how the
value of a variable within a loop is being calculated:

function test(){
var i=0;
var j=0;
while (i<5){

i++;
j=j+2;

}
}

Suppose we want to obtain the value for j (highlighted
in red) in the second iteration of the loop. Then, the
evaluation basically works as follows:

var myCounter=0;
var myResult;
var i=0;
var j=0;
while (i<5){

myCounter++;
i++;
if(myCounter==2){myResult=j; break;}
j=j+2;

}
myResult;

A counter gets inserted to check which iteration the loop is

4.4 Problems 31

in. If it is in the right iteration, the assignment myResult=j
takes place so that eval can return the according value.
For a loop within a loop, two counters have to be inserted Other cases
and both of them have to be checked, accordingly. There
are further variants of contexts like the different parts of a
for(firstPart;secondPart;thirdPart) statement.
The first part gets only executed once at the beginning
while the second part gets evaluated one time more than
the rest of the loop (the third part does not get evaluated).
For all cases, the dynamic generation of the code that re-
turns the value of interest works similar to the techniques
presented.

Obviously, this is a brute-force approach. For each value
that has to be calculated, all preceding code has to be eval-
uated. We used this approach anyway since we spent quite Summary: Very

inefficient; limited
functionality; still
completely sufficient
for the user study

some time developing the first version of the extension (us-
ing V8-Node) and were under considerable time pressure.
The technique we chose is simple and fast to develop. Fur-
thermore, the prototype only had to work for the second
user study, which is the reason why the limited function-
ality (loop nesting depth of 2 for example) was sufficient.
And finally, since the tasks in the second user study were
not very expensive with regards to calculation costs, even
this very inefficient version of the extension ran live with-
out any delays. Some tests showed that it would even have
been quick enough to operate with hundreds of iterations
more without any delay and with some few thousand iter-
ations more without dispatching the interface.

4.4 Problems

The biggest problem we encountered were infinite loops.
Because the interface runs completely live and tries to The Halting problem
evaluate the whole code while the user is editing it, infinite
loops may occur while the user is typing. Additionally,
it might of course be possible that there actually is an
infinite loop even though the user thinks the code is
correct. Without modification, the interface crashed in

32 4 Implementation

either of these cases. To prevent this from happening,
two minor modifications had to be done. Firstly, if we
want to calculate the number of iterations a loop does,
we check whether the counter we use for that calculation
is still below a certain limit (we used 999 here because
it proved to be sufficient and efficient enough to run
live). Now, the Halting Problem for this particular loop is
approximated. The problem of the infinite loop still exists,
though. Suppose, we have the following code:

var x=0;
var i=0;
while(x!=10){

i++;
}
x=i;

We now know that the loop does more then 999 iterations,
so we do not try to calculate the value for x in the invariantSubstitutions after

infinite loops or for i within the loop for any further iterations. The only
problem that remains is that we still try to get the value for
i in the last line. When we try to calculate this value we
do not yet know that there is an infinite loop somewhere
above. To find this out, a new global counter gets inserted
and limited to 5000 iterations:

var globalCounter=0;
var x=0;
var i=0;
while(x!=10){

if(globalCounter++ >= 5000){break;}
i++;

}
i;

This way, we could keep the incrementation and the check
whether there are more then 5000 iterations within one
statement (two statements are too many since after a

4.4 Problems 33

while without curly braces, only the first statement would
be executed). The incrementation and test get inserted into
every loop ahead of the position we are checking for. It
would of course have been possible to set a flag if there is
an infinite loop somewhere ahead but this way, we also
had the possibility to limit the overall number of iterations
and still get a value. The second user study showed that Flaw in the

implementationthis was the wrong approach: A user introduced an infinite
loop in a sorting algorithm. The condition for the loop was
never violated although the array was sorted. With the
technique of assigning a value to a variable although the
limitation of iterations has been hit, the sorted array was
shown in the return statement. Since the user only paid
attention to the output, he did not see that the number of
iterations of the loop was 999 and thought that the code is
correct.

Another minor problem was that, of course, while the user
is typing, the extension tries to evaluate code that is syntac- Suppress errors so

that user does not
get disturbed

tically not correct. The solution is to set window.onerror
to a function that always returns true. This way, errors
get just suppressed and the execution stops. If there is a
new change in the editor, the execution will start again and
work exactly the same way so that working code always is
executed and not working code is not.

The last problem concerned hiding code that does not
get evaluated. For loops, this could easily be done: If Hiding code within

failed if statementsthe loop is in its very last iteration (the invariant fails),
the rest of the loop has to be hidden, otherwise it does
not. Finding out if an if statement fails (and hence, the
according code has to be hidden), however, was more
difficult because we had not enough information to be able
to do so (remember: we only compute the first step, which
includes nothing but substituting all variables). To find out
if an if statement holds or not, we do the following: all
variables in the invariant get substituted and then we let
eval evaluate just the invariant. For if(x<y) with x=5
and y=6, we substitute all values: if(5<6) and then call
eval("(5<6)").

34 4 Implementation

Figure 4.1: Screenshot showing Brackets with our extension and a dummy script

Finally, Figure 4.1 shows how the prototype for our second
user study looks like.

35

Chapter 5

Second User Study

5.1 Course of the User Study

To find out whether our extension brings significant
improvement, a second, quantitative user study with 20 Hypothesis:

Compared to usual
debugging methods,
our technique brings
significant
improvement

participants has been conducted. The hypothesis was that
the debugging speed (in this case the time between the user
reading the code the first time and fixing it), compared to
a usual debugging engine, could significantly be reduced
with our extension. If this hypothesis would be supported
by the results of the user study, this would indicate that the
understanding speed of foreign code would be increased
by our method.

No user had worked with Brackets or JavaScript before
(notwithstanding that all of them had worked with Java
before). Users were Computer Science students with 4-9
(average of 5.8) years of programming experience. Only
three of them had professional experience (2-4 years). All
users took part voluntarily and were not rewarded in any
way.

To test the hypothesis, two searching algorithms (an
implementation of Shakersort and an implementation of
Bubblesort) have been implemented and a small bug has

36 5 Second User Study

been introduced in either of them (see Appendix A). The
task of the user was to find both bugs - one time with2 algorithms; 1 bug

each; 2 tasks: debug
one time with

Brackets’ tools and
one time with our

extension

our extension and one time using the traditional way
(that is, using the console, breakpoints, variable viewer,
web kit inspector and the step over functionality Brackets
provides). Each user received an intro to the function-
ality of both, our extension and the Brackets debugging
engine. For both, a small dummy script has been shown
with which it has been explained how each part of the
functionality works until the user confirmed that he or she
understood every part of the functionality. The task for
the user was to find the bug in the code (users have been
told that there is exactly one bug), fix it and give notice
when he or she thought that the code is correct (task to
condition assignment and task order were counterbalanced
to eliminate side effects).

After the two debugging tasks had been accomplished,
each user filled out two versions of the System UsabilitySystem Usability

Scale to find out
whether users liked

working with the
system

Scale [Brooke, 1996] (SUS), one for our extension and one
for the standard debugging Brackets provides. The first
10 questions are identical to the initial version that has
been presented in 1996 except that the word ”cumbersome”
in point 8 has been changed to ”awkward” as suggested
by [Finstad, 2006]. For the extension, the following ques-
tions have been added to the questionnaire:

• I found the additional information very helpful for
my task

• I was distracted by the additional information

• I found it very easy to follow the control flow of the
program

• I found complex control structures hard to under-
stand

For the debugging using Brackets, the following two ques-
tions have been added:

• I found it very easy to follow the control flow of the
program

5.2 Results 37

• I found complex control structures hard to under-
stand

See Appendix B for a complete version of both question-
naires.

Finally, a short qualitative review has been done with each
user. Topics were not set à priori, so the discussion con-
cerned mainly subjects we observed during the debugging
tasks (see Section 5.2.3)

5.2 Results

5.2.1 Debugging Times

The box plot in Figure 5.1 represents the time users needed
to accomplish the different tasks.

Since it is not possible to assume that debugging the two
different code examples is equally difficult without loosing
the meaningfulness of the results, they have to be analyzed
independently.

On average, participants were faster debugging Shak-
ersort using our extension (M = 402.00, SE = 48.464) On average, users

were faster using our
extension, but not
significantly

than using Brackets (M = 495.2, SE = 61.896). This
difference was not significant with t(9) = 1.159 and
p > 0.05. However, it did represent a medium-sized
effect with r = 0.36037. The results for Bubblesort are
analogous: Using the extension, users were were faster
(M = 416.33, SE = 47.885) than without it (M = 477.56,
SE = 41.597). The result also is non-significant with
t(8) = 1.046 and p > 0.05. And with r = 0.34685,
the effect is medium-sized for Bubblesort as well.

38 5 Second User Study

Bubblesort with
extension

Bubblesort without
extension

Shakersort with
extension

Shakersort without
extension

se
co

nd
s

800

600

400

200

Figure 5.1: Box plot for the different task completion times

EXCURSUS:
Assuming that debugging both algorithms is equally dif-
ficult leads to significant results (t(37) = 1.705 and p <
0.05). As mentioned above, this is not possible with-
out loosing the meaningfulness of the results. However,
along with the medium-sized effects of both tasks taken
individually, this indicates that just continuing the user
study (with 10 or 20 more users) will lead to significant
results.

5.2.2 System Usability Scale

According to the SUS-values, users liked the Live CodingAccording to the
SUS-values, users

liked our system
better than Brackets

extension considerably better (M = 81.95, SE = 1.804)
than the developer tools Brackets provides (M = 51.20,
SE = 2.117). This result is significant with t(19) = 15.831

5.2 Results 39

Standard DebuggingLive Debugging

100

8 0

6 0

4 0

SU
S-
sc
or
e

Figure 5.2: Box plot for the SUS-values with and without extension

and p < 0.01. This can also be seen in the box plot of the
SUS-scores in Figure 5.2. Finally, Figure 5.3 shows how the
users responded to the additional questions on the ques-
tionnaire

5.2.3 Qualitative Results

We found two major issues in the qualitative follow-up
survey. Firstly, the iterator and parameter fields are too Iterator and

parameter fields are
too small

small. Users had difficulties hitting the intended buttons
on the iterator and reading the content of the parameter
fields. Secondly, many users expected the interface to show
the first iteration of a loop first and not the last one. This Users expected

interface to show first
iteration first

was particularly observable with nested loops. When the
outer iteration had been changed, most users expected the
interface to first show the first iteration of the inner loop
because that reflects their way of comprehending the code.

40 5 Second User Study

Strongly agreeStrongly disagree

I found the additional information
very helpful for my task (Live Debugging)

I was distracted by the additional
information (Live Debugging)

I found it very easy to follow the control
flow of the program (Live Debugging)

I found it very easy to follow the control
flow of the program (Standard Debugging)

I found complex control structures
hard to understand (Live Debugging)

I found complex control structures
hard to understand (Standard Debugging)

Figure 5.3: Box plot for the additional points on the questionnaire

One user uncovered a flaw in the implementation. As
already explained in section 4.4, even if an infinite loop
occurs somewhere in the code, values are still assigned to
the variables (either after the 999th iteration of one loop or
after there have globally been more than 5000 iterations).Flaw in the

implementation:
Despite endless loop,

values are assigned

In this particular case, the algorithm was finished with
sorting the array but the invariant was wrong in such a
way that it did not get violated anyway. Nevertheless,
the extension assigned a value to the return statement.
The user could have seen that there is an infinite loop by
looking at the iterator which showed ”999/999” after each
edit. However, since he changed the exemplary input array
and looked only at the result (which was a correctly sorted
array), he thought that the code was correct although it
was not. This means that, in a future implementation, no
substitution should take place in unreachable assignments.

5.2 Results 41

Finally, many users said it would be good to highlight,
which element of an array is addressed by an index. For
[45,3,2,4,5,42,7,5,3][5], for example, users should not have
to count which element is the fifth one but that element
should modestly be highlighted.

5.2.4 Discussion

Most users stated that the extension would help improve
the understanding (debugging) process. Considering the
System Usability Scales, the additional questions on the
questionnaires and the qualitative statements of the users,
users liked our extension notably better than the devel-
oper tools Brackets provides. However, no significant re- Users liked extension

and said that it would
help. Nevertheless,
no significant
improvement could
be shown in the user
study

sult could be obtained in this quantitative user study that
confirms the initial hypothesis. Some users reported that,
despite the introduction to the extension, it was not as easy
to involve the extension in the understanding process as it
was for the Brackets tools because they were used to the
way the traditional tools work and not to the way the ex-
tension works. It is quite possible that just continuing the
user study or refining the prototype and the user study will
both lead to significant results. The user study presented
in this chapter, however, does not provide any conclusive
manifestations concerning improvements in debugging or
understanding speeds.

43

Chapter 6

Summary and future
work

6.1 Summary

Live Coding enables the programmer to illuminate code
during editing it in order to understand its internal behav-
ior. A user study with low fidelity prototypes has been con-
ducted to find out how the basic interconnection between
code and a continuously updated, evaluated version of the
code can best be displayed. A software prototype of the re-
sult, an evaluated copy of the code with syntax highlight-
ing and indents in a separate section of the IDE, has been
implemented in form of an extension for Brackets. It has
been explained how this prototype essentially works, what
drawbacks it has and which problems occurred during the
implementation. With this prototype, a second user study
has been conducted, which should reveal if there is a signif-
icant enhancement in the debugging speed of experienced
programmers. Although this user study only yielded non-
significant results, there is evidence that significant results
can be obtained by continuing the user study.

44 6 Summary and future work

6.2 Future Work

The quantitative user study only yielded non-significant
results but there is evidence that a significant result can2 possible

approaches to
significant results

be obtained (see Chapter 5). Therefore, two possibilities
of continuation exist. Firstly, it is possible to refine the
software-prototype, then to design and conduct a further
user study. Secondly, it is possible that simply continuing
the user study presented in Chapter 5 with another 10 or
20 users will already yield a significant result.

The biggest issues for a continuation of the design of the
interface are caused by complex data structures. Firstly,
complex data structures have to be displayed. In the
prototypes presented in this paper, only simple data types
(Strings, Arrays, Integers,...) have been displayed. If,
however, the interface is supposed to be used on a day-
to-day basis, complex data structures (e.g. DOM-elements
or self-defined structures) have to be representable. It
would be conceivable to use a representation similar to
the one Bracket’s web kit inspector uses. Figure 6.1(a)
shows how this looks likes for the DOM-element this. IfComplex data

structures have to be
displayed...

the user presses the small arrow, the element ”unfolds”
and its attributes can be inspected (Figure 6.1(b)). This
approach, however, has the drawback that information is
not quickly available and therefore another approach that
concentrates on instantly showing relevant information
might be interesting.

Furthermore, complex data structures do not only have
to be displayed but also to be entered. An approach that...and to be entered
might be a solution for this problem has been presented
by [Edwards, 2004]. When a program calls an external
function in the IDE presented by Edwards, only the fact of
their execution and their return value are traced. Similarly,
it might be possible for our environment to remember
with what parameters the function that has to be evaluated
has been called for an exemplary execution of the context
the function is used in. This way, not only does the user
save time by not having to enter the example but also an
example is available that indeed occurs.

6.2 Future Work 45

(a) DOM-element folded (b) DOM-element unfolded

Figure 6.1: Version 1: The evaluated version of the code is
on the right-hand side and keeps its structure and syntax
highlighting

Another aspect that might be a sensible enhancement is
the incorporation of the Test-Driven Development [Williams Potential field of

research:
congruence with
TDD and Continuous
Testing

et al., 2003],[Beck, 2002], [Saff and Ernst, 2004a] and the
Continuous Testing approach [Saff and Ernst, 2004b]. The
idea of the Test-Driven Development is to first write test
cases and then implement the according production code.
Although Continuous Testing is predominantly used for
large scale systems, there is common ground between Con-
tinuous Testing and the Test-Driven Development. There-
fore, checking how our approach can be integrated into and
combined with these techniques is a promising field of re-
search.

47

Appendix A

Code for the Second
User Study

function sort(inputArray){
var array=inputArray;
var n=array.length;
var newn;
var swap;
while(n>1)
{

newn=1;
for(var i=0; i<n-1;i++)
{

if(array[i]>array[i+1])
{

swap=array[i];
array[i]=array[i+1];
array[i+1]=swap;
newn=i+1;

}
}
n=newn;

}
return array;

}

The Bubblesort implementation (red highlighted +1 has been left out)

48 A Code for the Second User Study

function sort(inputArray)
{

var array=inputArray;
var begin=-1;
var end=array.length-2;
var swapped=true;
var swap;

while(swapped){
swapped=false;
begin++;
for(var i=begin; i<=end;i++)
{

if(array[i]>array[i+1])
{

swap=array[i];
array[i]=array[i+1];
array[i+1]=swap;
swapped=true;

}
}
end--;
for(var i = end; i>=begin;i--)
{

if(array[i]>array[i+1])
{

swap=array[i];
array[i]=array[i+1];
array[i+1]=swap;
swapped=true;

}
}

}
return array;

}

The Shakersort implementation (red highlighted -1 has been changed to 0)

49

Appendix B

System Usability Scales

On the following two pages, the System Usability Scale
questionnaires used in our second user study can be seen.

50 B System Usability Scales

System Usability Scale - Standard Debugging

Strongly
Disagree

Strongly
Agree

1. I think that I would like to use this
system frequently

2. I found the system unnecessarily
complex

3. I thought the system was easy to use

4. I think that I would need the support of
a technical person to be able to use
this system

5. I found the various functions in this
system were well integrated

6. I thought there was too much
inconsistency in this system

7. I would imagine that most people
would learn to use this system very
quickly

8. I found the system very awkward to
use

9. I felt very confident using the system

10. I needed to learn a lot of things before
I could get going with this system

11. I found it very easy to follow the
control flow of the program

12. I found complex control structures
hard to understand

Figure B.1: System Usability Scale questionnaire for debugging using Brackets

51

System Usability Scale - Live Coding Extension

Strongly
Disagree

Strongly
Agree

1. I think that I would like to use this
system frequently

2. I found the system unnecessarily
complex

3. I thought the system was easy to use

4. I think that I would need the support of
a technical person to be able to use
this system

5. I found the various functions in this
system were well integrated

6. I thought there was too much
inconsistency in this system

7. I would imagine that most people
would learn to use this system very
quickly

8. I found the system very awkward to
use

9. I felt very confident using the system

10. I needed to learn a lot of things before
I could get going with this system

11. I found the additional information very
helpful for my task

12. I was distracted by the additional
information

13. I found it very easy to follow the
control flow of the program

14. I found complex control structures
hard to understand

Figure B.2: System Usability Scale questionnaire for debugging using the Live Cod-
ing Extension

53

Bibliography

Kent Beck. Test Driven Development. By Example (Addison-
Wesley Signature). Addison-Wesley Longman, Amster-
dam, 2002. ISBN 0321146530.

B. W. Boehm. Classics in software engineering. chap-
ter Software engineering, pages 323–361. Yourdon Press,
Upper Saddle River, NJ, USA, 1979. ISBN 0-917072-
14-6. URL http://dl.acm.org/citation.cfm?id=
1241515.1241536.

Joel Brandt, Vignan Pattamatta, William Choi, Ben Hsieh,
and Scott R. Klemmer. Rehearse: Helping programmers
adapt examples by visualizing execution and highlight-
ing related code.

Joel Brandt, Philip J. Guo, Joel Lewenstein, and Scott R.
Klemmer. Opportunistic programming: how rapid
ideation and prototyping occur in practice. In Proceed-
ings of the 4th international workshop on End-user soft-
ware engineering, WEUSE ’08, pages 1–5, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-034-0. doi: 10.
1145/1370847.1370848. URL http://doi.acm.org/
10.1145/1370847.1370848.

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. Opportunistic pro-
gramming: Writing code to prototype, ideate, and dis-
cover. IEEE Softw., 26(5):18–24, September 2009a. ISSN
0740-7459. doi: 10.1109/MS.2009.147. URL http://dx.
doi.org/10.1109/MS.2009.147.

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. Two studies of
opportunistic programming: interleaving web forag-
ing, learning, and writing code. In Proceedings of the

http://dl.acm.org/citation.cfm?id=1241515.1241536
http://dl.acm.org/citation.cfm?id=1241515.1241536
http://doi.acm.org/10.1145/1370847.1370848
http://doi.acm.org/10.1145/1370847.1370848
http://dx.doi.org/10.1109/MS.2009.147
http://dx.doi.org/10.1109/MS.2009.147

54 Bibliography

27th international conference on Human factors in comput-
ing systems, CHI ’09, pages 1589–1598, New York, NY,
USA, 2009b. ACM. ISBN 978-1-60558-246-7. doi: 10.
1145/1518701.1518944. URL http://doi.acm.org/
10.1145/1518701.1518944.

J. Brooke. SUS: A quick and dirty usability scale. In P. W.
Jordan, B. Weerdmeester, A. Thomas, and I. L. Mclelland,
editors, Usability evaluation in industry. Taylor and Fran-
cis, London, 1996.

Robert DeLine, Mary Czerwinski, Brian Meyers, Gina
Venolia, Steven Drucker, and George Robertson. Code
thumbnails: Using spatial memory to navigate source
code. In Proceedings of the Visual Languages and Human-
Centric Computing, VLHCC ’06, pages 11–18, Washing-
ton, DC, USA, 2006. IEEE Computer Society. ISBN 0-
7695-2586-5. doi: 10.1109/VLHCC.2006.14. URL http:
//dx.doi.org/10.1109/VLHCC.2006.14.

Jonathan Edwards. Example centric programming. In
Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and
applications, OOPSLA ’04, pages 124–124, New York,
NY, USA, 2004. ACM. ISBN 1-58113-833-4. doi: 10.
1145/1028664.1028713. URL http://doi.acm.org/
10.1145/1028664.1028713.

Hakan Erdogmus, Maurizio Morisio, and Marco Torchi-
ano. On the effectiveness of the test-first approach to
programming. IEEE Transactions on Software Engineer-
ing, 31:226–237, 2005. ISSN 0098-5589. doi: http://doi.
ieeecomputersociety.org/10.1109/TSE.2005.37.

Kraig Finstad. The System Usability Scale and Non-Native
English Speakers. Journal of Usability studies, 1(4):185–
188, 2006. URL http://www.upassoc.org/upa_
publications/jus/2006_august/finstad_sus%
_non_native_speakers.pdf.

Peter Henderson and Mark Weiser. Continuous execution:
the visiprog environment. In Proceedings of the 8th inter-
national conference on Software engineering, ICSE ’85, pages
68–74, Los Alamitos, CA, USA, 1985. IEEE Computer So-
ciety Press. ISBN 0-8186-0620-7. URL http://dl.acm.
org/citation.cfm?id=319568.319582.

http://doi.acm.org/10.1145/1518701.1518944
http://doi.acm.org/10.1145/1518701.1518944
http://dx.doi.org/10.1109/VLHCC.2006.14
http://dx.doi.org/10.1109/VLHCC.2006.14
http://doi.acm.org/10.1145/1028664.1028713
http://doi.acm.org/10.1145/1028664.1028713
http://www.upassoc.org/upa_publications/jus/2006_august/finstad_sus% _non_native_speakers.pdf
http://www.upassoc.org/upa_publications/jus/2006_august/finstad_sus% _non_native_speakers.pdf
http://www.upassoc.org/upa_publications/jus/2006_august/finstad_sus% _non_native_speakers.pdf
http://dl.acm.org/citation.cfm?id=319568.319582
http://dl.acm.org/citation.cfm?id=319568.319582

Bibliography 55

Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. Six
learning barriers in end-user programming systems. In
Proceedings of the 2004 IEEE Symposium on Visual Lan-
guages - Human Centric Computing, VLHCC ’04, pages
199–206, Washington, DC, USA, 2004. IEEE Computer
Society. ISBN 0-7803-8696-5. doi: 10.1109/VLHCC.2004.
47. URL http://dx.doi.org/10.1109/VLHCC.
2004.47.

Donald A. Norman. The design of everyday things. Basic
Books, [New York], 1. basic paperback ed., [nachdr.] edi-
tion, 2002. ISBN 0-465-06710-7.

J. F. Pane and B. A. Myers. Usability issues in the design of
novice programming systems. Technical report, Carnegie
Mellon University, August 1996.

David Saff and Michael D. Ernst. Continuous testing in
eclipse. Electron. Notes Theor. Comput. Sci., 107:103–117,
December 2004a. ISSN 1571-0661. doi: 10.1016/j.entcs.
2004.02.051. URL http://dx.doi.org/10.1016/j.
entcs.2004.02.051.

David Saff and Michael D. Ernst. An experimental eval-
uation of continuous testing during development. SIG-
SOFT Softw. Eng. Notes, 29(4):76–85, July 2004b. ISSN
0163-5948. doi: 10.1145/1013886.1007523. URL http:
//doi.acm.org/10.1145/1013886.1007523.

Bret Victor. Inventing on principle, cusec 2012.

Laurie Williams, E. Michael Maximilien, and Mladen Vouk.
Test-driven development as a defect-reduction practice.
In Proceedings of the 14th International Symposium on Soft-
ware Reliability Engineering, ISSRE ’03, pages 34–, Wash-
ington, DC, USA, 2003. IEEE Computer Society. ISBN
0-7695-2007-3. URL http://dl.acm.org/citation.
cfm?id=951952.952364.

http://dx.doi.org/10.1109/VLHCC.2004.47
http://dx.doi.org/10.1109/VLHCC.2004.47
http://dx.doi.org/10.1016/j.entcs.2004.02.051
http://dx.doi.org/10.1016/j.entcs.2004.02.051
http://doi.acm.org/10.1145/1013886.1007523
http://doi.acm.org/10.1145/1013886.1007523
http://dl.acm.org/citation.cfm?id=951952.952364
http://dl.acm.org/citation.cfm?id=951952.952364

Typeset September 12, 2012

	Abstract
	Acknowledgements
	Introduction
	Related Work
	First User Study
	The Prototypes
	Interface Version 1
	Interface Version 2
	Interface Version 3
	Interface Version 4
	Interface Version 5

	Course of the User Study
	Results
	Further Comments and Suggestions for Improvement
	Conclusions

	Implementation
	First Approach (discharged)
	Basic Evaluation Technique
	How Values Are Being Calculated
	Problems

	Second User Study
	Course of the User Study
	Results
	Debugging Times
	System Usability Scale
	Qualitative Results
	Discussion

	Summary and future work
	Summary
	Future Work

	Code for the Second User Study
	System Usability Scales
	Bibliography

