
Patch Panel: Distributed I/O Management for Ubicomp

Rafael Ballagas
Media Computing Group
RWTH Aachen University
52072, Aachen, Germany

ballagas@cs.rwth-aachen.de

ABSTRACT
The goal of this work is to enable the concept of focus for the
ubicomp domain by providing distributed I/O management.
This includes developing an infrastructure solution that pro-
vides dynamic interoperability, security, and acceptable la-
tency for interaction with ubicomp applications. It also in-
cludes the development of new focus models that hold up
to the broader characteristics of ubicomp applications. Then
using this system we can study the user issues and concep-
tual difficulties associated with distributed I/O.

INTRODUCTION
In the traditional desktop environment, there is a single user
with a single point of focus. The primary output mecha-
nism is a graphical display and input is done primarily with a
mouse and keyboard. Human interaction with desktop appli-
cations is coordinated through the window system, as shown
in Figure 1. One role of window systems isinput manage-
ment(e.g. management of event flow and event abstraction).
The base window system canonicalizes, time-stamps, and
orders events, then it determines in which window the mouse
pointer resides. The window manager makes a routing de-
cision based on focus policy (usually,click-to-type), event
type, and current focus [1]. The UI toolkit may abstract
events to widget specific event types before the event arrives
at the application.

Using window systems for input management is time tested
and works well for desktop environments, but quickly breaks
down outside of this realm. For example, in ubicomp en-
vironments, there are multiple users, each with their own
point of focus interacting with multiple devices, using mul-
tiple modalities. Output will not be limited to the window
construct or graphical output, but may utilize ambient dis-
plays or physical devices. In addtion, ubiquitous computing
environments are constantly changing due to evolution of
physical spaces, introduction of unanticipated entities (e.g.
applications, devices, services), and the transient nature of
people moving in and out of these spaces.

Desktop systems are also self-contained entities, making many
aspects like security and latency for local I/O less signifi-

Base Window System

Window Manager

UI Toolkit

Application

Graphics Library
{

Hardware

Window
System

Figure 1. Classic layered model of the window system. All window
systems do not explicitly implement the layer architecture, but all do
implement the functionality represented by the layers. [1]

cant. For example, it is acceptable to trust that the input
device connected to the computer is being manipulated by
the person currently logged in. Additionally, it is reasonable
to assume that no unauthorized entity will be able to illegally
view the input from your device1. However, these assump-
tions are no longer valid in the distributed environments typi-
cal of ubiquitous computing. Sensitive data between devices
and applications must be adequately safeguarded from un-
wanted parties on the network. Additionally, access control
mechanisms must be in place to verify that the user manip-
ulating a certain device has permissions to interact with a
particular application. Also with distributed systems, lag is
inevitable and can have a multiplicative effect on the Fitt’s
law index of difficulty [2] and greatly diminish human task
performance. A distributed I/O management infrastructure
must provide information security and privacy as well as a
high system performance to maintain fluid interactivity.

INFRASTRUCTURE DESIGN
We propose a new system design based heavily on our ex-
perience with the iStuff toolkit [3]. Intermediation will be
used as the fundamental mechanism to support ad-hoc in-
teroperation between heterogeneous components as demon-
strated in our previous work on the Patch Panel [4]. There
are two main drawbacks from using intermediation for dis-
tributed I/O management that pose interesting research ques-
tions from a systems architecture point of view: security and
latency.

1assuming the machine is adequately protected from Trojan Horse or Spyware attacks

1



Security
Intermediation is a mechanism that intercepts and rewrites
messages, which is exactly the activity that traditional secu-
rity measures are designed to prevent. A research question
arises: how can we provide secure intermediation? Our de-
sign slightly deviates from traditional end-to-end security.
It consists of a secure connection between the event origin
and the intermediary, and then another secure connection be-
tween the intermediary and the destination. In a centralized
Patch Panel architecture, this is easily criticized because a
single entity knows all secrets. Instead, our system design
incorporates one instance of the Patch Panel per user, reduc-
ing the impact of a security breach to a single user. This
architecture has an advantage in that it guarantees the user
source of the data instead of the physical source, facilitating
access control mechanisms.

Latency
Intermediation adds a level of indirection between distributed
hardware and applications increasing system latency. This
latency proved unacceptable for direct manipulation under
certain common conditions like network load [4]. We pro-
pose to build a transport mechanism that is optimized for the
two-hop communication found with intermediation. Opti-
mizations will include:

• Quality of Service:We will include event priority mech-
anisms with three priority levels (from highest to lowest):
direct manipulation, command-style interaction, and sta-
tus updates. We will also explore techniques to prioritize
UI network traffic over other data traffic on the network.

• End-to-end flow control:Standard TCP flow control can
result in undesirable queueing in the intermediary. Higher
level flow-control is required to optimize network traffic
for the intermediation-centered communication.

• Minimal network load: Network transmissions will be
limited to events that have outstanding subscriptions.

• Distributed work load:With large numbers of users and
mappings, a centralized Patch Panel can become a perfor-
mance bottleneck. The per-user architecture distributes
the work load reducing this effect.

Evaluation
The evaluation of the distributed I/O system performance is a
research question in itself [5]. Although constant lag is well
understood as a factor in determining human performance,
the lag commonly found in distributed settings today is ran-
dom. We propose to perform a Fitt’s Law style analysis of
human performance under stochastic lag to understand the
tradeoff between mean and standard deviation of lag. With
this work, we can take measurements of our system perfor-
mance over time to judge if our system performance affords
acceptable human task performance for direct manipulation.

FOCUS
The focus policy is central to achieving distributed I/O man-
agement. How will a user associate input with interactive
digital elements in a ubiquitous computing environment?

Several distributed focus policies have been attempted in
other research projects. For example in the XWand [6] project,
a user may point a physical wand at a device and then control
it using simple gestures. Alternatively in the PointRight [7]
project, a static spatial layout of the room is used to guide the
redirection of a pointer and the users focus between differ-
ent machines. A system might potentially monitor the users
gaze as an indicator to redirect focus. We plan to continue
to identify and comparatively evaluate the different focus
mechanisms by measuring task completion times and suc-
cess rates for common ubicomp tasks.

CONCEPTUAL MODELS
A system with distributed I/O management will enable ad-
vanced study of user centered issues, including:

• Device ownership:how does a user associate and relin-
quish a device with his identity?

• Troubleshooting:Can an average desktop computer user
deal with the added complexity of distributed I/O? What
mental models do they have of the interactions and how do
they go about solving problems when things go wrong?

• Metaphors for Lag:is it possible to mitigate lag with new
feedback mechanisms like a haptic progress bar, or cursor
decorators [8]?

RELATED WORK
Many ubicomp middleware infrastructures employ indirect
communication mechanisms through publish/subscribe se-
mantics that could facilitate intermedation [9, 10]. However,
none of these systems directly support intermediation. Ad-
ditionally, several systems have worked on input redirection
and notions of distributed I/O management [6, 7, 11].

REFERENCES
1. J. Gosling, D. Rosenthal, and M. Arden.Windows

System Architecture: History, Terms and Concepts,
pages 23–52. Springer-Verlag, 1989.

2. I. MacKenzie and C. Ware. Lag as a determinant of
human performance in interactive systems. InProc.
CHI, pages 488–493. ACM, 1993.

3. R. Ballagas, M. Ringel, M. Stone, and J. Borchers.
iStuff: A Physical User Interface Toolkit for Ubiquitous
Computing Environments. InProc. CHI, pages
537–544, Ft. Lauderdale, FL, USA, April 2003. ACM.

4. R. Ballagas, A. Szybalski, and A. Fox. Patch Panel:
Enabling Control-Flow Interoperability in Ubicomp

2



Environments. InProc. PerCom, Orlando, FL, USA,
March 2004. IEEE.

5. W. Keith Edwards, Victoria Bellotti, Anind K. Dey, and
Mark W. Newman. The challenges of user-centered
design and evaluation for infrastructure. InProc. CHI,
pages 297–304. ACM, 2003.

6. A. Wilson and S. Shafer. XWand: UI for intelligent
spaces. InProc. CHI, pages 545–552. ACM, 2003.

7. B. Johanson, G. Hutchins, T. Winograd, and M. Stone.
PointRight: experience with flexible input redirection
in interactive workspaces. InProc. UIST, pages
227–234. ACM, 2002.

8. Carl Gutwin, Steve Benford, Jeff Dyck, Mike Fraser,
Ivan Vaghi, and Chris Greenhalgh. Revealing delay in
collaborative environments. InProc. CHI, pages
503–510. ACM, 2004.

9. B. Johanson and A. Fox. The Event Heap: A
Coordination Infrastructure for Interactive Workspaces.
In Proc. WMCSA, page 83. IEEE, 2002.

10. M. Mamei and F. Zambonelli. Programming pervasive
and mobile computing applications with the TOTA
middleware. InProc. PerCom, pages 263–273. IEEE,
March 2004.

11. M. Newman et. al. Designing for serendipity:
supporting end-user configuration of ubiquitous
computing environments. InProc. DIS, pages 147–156.
ACM, 2002.

BIOGRAPHY
Rafael Ballagas is a computer science doctoral candidate
in the Media Computing Group at RWTH Aachen Univer-
sity with an anticipated graduation date of September 2006.
His research interests include distributed I/O, tangible inter-
faces, and infrastructure solutions for ubiquitous computing
environments and interactive media applications. Rafael has
developed the iStuff toolkit for rapidly prototyping physi-
cal user interfaces and the Patch Panel intermediary to sup-
port incremental integration and reconfiguration of toolkit
components. He has an MS in electrical engineering from
Stanford University and a BS in electrical engineering from
Georgia Institute of Technology. Upon finishing his degree,
Rafael hopes to become a professor in computer science with
a research emphasis on Human Computer Interaction and
Ubiquitous Computing.

Rafael has been active in research of interactive spaces in-
cluding two-years of research in the iRoom at Stanford Uni-
versity. Now he is helping to construct a new interactive
space envisioned by his supervisor Jan Borchers with a fo-
cus on interactions with time-based media at RWTH Aachen
University. Other professional activities include co-organizing

the workshopToolkit Support for Interaction in the Physical
World at Pervasive 2004. Rafael is also active in teaching
as a teaching assistant for the computer science coursesDe-
signing Interactive Systems, an introduction to Human Com-
puter Interaction, andHCI Design Patterns, an introduction
to how patterns can be applied to the field of HCI, andThe
Media Computing Project, a project based course with a fo-
cus on ubiquitous and media computing.

3


